Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 44(22): e2300372, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37689977

ABSTRACT

The development of high-temperature resistant dielectrics with excellent dielectric properties and self-healing behavior is crucial for the application of metallized film capacitors. In this work, a series of polyetherimide (PEI) dielectric films are designed and fabricated. The introduction of polar groups is in favor to the increase of permittivity, and the flexible connection such as the ether group will facilitate the reduction of dielectric loss. Moreover, the oxygen elements are beneficial to the "self-healing" of metallized film capacitors. Consequently, the permittivity of 3.53-4.00, dissipation factor of 0.281-0.517%, and Weibull breakdown strength of 347-674 MV m-1 are obtained for the PEI dielectrics. In addition, PEI-4 (BPADA-BAPP) and PEI-8 (BPADA-MDA) are selected to further investigate dielectric breakdown (150 °C), electrical displacement-electric filed (D-E) loop (at room temperature and 150 °C) as well as self-healing performance, which will evaluate their potential in practical applications. The results show that PEI-8 has stable breakdown field strength and high charge-discharge efficiency at elevated temperatures. Metallized film capacitor based on PEI-8 exhibits excellent self-healing performance, with pleasing self-clear morphology, high breakdown voltage, and reduced self-healing energy. Therefore, PEI-8 is considered as a potential candidate for metallized film capacitors applied under harsh conditions.


Subject(s)
Electricity , Ethers , Ethyl Ethers , Oxygen
2.
RSC Adv ; 13(2): 1278-1287, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36686916

ABSTRACT

Dielectrics of the polymer-matrix composite are considered to present combined advantages from both the polymer matrix and inorganic fillers. However, the breakdown strength, as well as energy density, is not effectively enhanced due to the poor compatibility between the organic and inorganic components. Herein, polymer composites derived from polystyrene (PS) and barium titanate (BTO) are proposed and beneficial interface modification by poly(styrene-co-maleic anhydride) (PS-co-mah) is conducted to improve compatibility between the inorganic filler and polymer matrix. The results show that the BTO@PS-co-mah/PS composites, in which the interfacial layer of PS-co-mah would undergo chemical reactions with the aminated BTO and blend PS matrix with excellent physical compatibility, exhibit enhanced breakdown strength and declined dielectric loss compared with both pure PS and BTO/PS without interfacial modulation. Particularly, the BTO@PS-co-mah/PS composite with 5 wt% filler content indicates optimized performance with an E b of 507 MV m-1 and tan δ of 0.085%. It is deduced that the deep energy traps introduced by the PS-co-mah layer would weaken the local electric field and suppress the space charge transporting so as to optimize the performance of composites. Consequently, the interfacial-modified BTO@PS-co-mah/PS would present great potential for applications, such as film capacitors.

3.
Macromol Rapid Commun ; 44(2): e2200568, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36125043

ABSTRACT

The development of novel polymer dielectrics with enhanced dielectric performance is a great challenge for application of film capacitors in modern electronics and electrical systems. Herein, an innovative approach of chemical vapor deposition polymerization technology is proposed to prepare the all-organic sandwich structured parylene/polyimide/parylene (Py/PI/Py) composite films by employing poly(chloro-para-xylylene) (parylene C) as the outer layers and polyimide (PI) as the inner layer. The Py/PI/Py composites exhibit superior thermal resistance and outstanding mechanical properties. Moreover, thanks to the interfacial effect which contributes to reinforcing the dielectric response and the thickness effect which facilitates improving the breakdown strength, the dielectric performance of Py/PI/Py composites has been enhanced significantly. Accordingly, dielectric constant of 4.52-5.09, dissipation factor of 0.21-1.01%, and breakdown strength of 307-460 MV m-1 are achieved. Besides, notable energy storage performance is also obtained in Py/PI/Py composite dielectrics. Consequently, this novel application of chemical vapor deposition polymerization method in preparing all-organic multilayered polymer composite films with sandwich structure shows promising potential in film capacitor applications in harsh conditions.


Subject(s)
Polymers , Xylenes , Electricity , Electronics , Gases
SELECTION OF CITATIONS
SEARCH DETAIL
...