Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Neurotox Res ; 42(3): 27, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819761

ABSTRACT

Early and prolonged exposure to anesthetic agents could cause neurodevelopmental disorders in children. Astrocytes, heavily outnumber neurons in the brain, are crucial regulators of synaptic formation and function during development. However, how general anesthetics act on astrocytes and the impact on cognition are still unclear. In this study, we investigated the role of ferroptosis and GPX4, a major hydroperoxide scavenger playing a pivotal role in suppressing the process of ferroptosis, and their underlying mechanism in isoflurane-induced cytotoxicity in astrocytes and cognitive impairment. Our results showed that early 6 h isoflurane anesthesia induced cognitive impairment in mice. Ferroptosis-relative genes and metabolic changes were involved in the pathological process of isoflurane-induced cytotoxicity in astrocytes. The level of GPX4 was decreased while the expression of 4-HNE and generation of ROS were elevated after isoflurane exposure. Selectively blocking ferroptosis with Fer-1 attenuated the abovementioned cytotoxicity in astrocytes, paralleling with the reverse of the changes in GPX4, ROS and 4-HNE secondary to isoflurane anesthesia. Fer-1 attenuated the cognitive impairment induced by prolonged isoflurane exposure. Thus, ferroptosis conduced towards isoflurane-induced cytotoxicity in astrocytes via suppressing GPX4 and promoting lipid peroxidation. Fer-1 was expected to be an underlying intervention for the neurotoxicity induced by isoflurane in the developing brain, and to alleviate cognitive impairment in neonates.


Subject(s)
Animals, Newborn , Astrocytes , Cognitive Dysfunction , Ferroptosis , Isoflurane , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Isoflurane/toxicity , Ferroptosis/drug effects , Ferroptosis/physiology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/metabolism , Mice , Anesthetics, Inhalation/toxicity , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism
2.
Zool Res ; 45(3): 663-678, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766748

ABSTRACT

A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment. Davunetide, an active fragment of the activity-dependent neuroprotective protein (ADNP), has been implicated in social and cognitive protection. However, the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood. In this study, ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice. The neuropathological basis was also explored using Golgi staining, morphological analysis, western blotting, electrophysiological analysis, and behavioral analysis. Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane. In adulthood, anterior cingulate cortex (ACC) neurons exposed to sevoflurane exhibited a decrease in dendrite number, total dendrite length, and spine density. Furthermore, the expression levels of Homer, PSD95, synaptophysin, and vglut2 were significantly reduced in the sevoflurane group. Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). Notably, davunetide significantly ameliorated the synaptic defects, social behavior deficits, and cognitive impairments induced by sevoflurane. Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca 2+ activity via the Wnt/ß-catenin signaling, resulting in decreased expression of synaptic proteins. Suppression of Wnt signaling was restored in the davunetide-treated group. Thus, ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics. This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.


Subject(s)
Animals, Newborn , Cognitive Dysfunction , Proteome , Sevoflurane , Social Behavior , Animals , Sevoflurane/adverse effects , Mice , Cognitive Dysfunction/chemically induced , Ribosomes/drug effects , Ribosomes/metabolism , Anesthetics, Inhalation/adverse effects , Anesthetics, Inhalation/toxicity , Anesthetics, Inhalation/pharmacology , Nerve Tissue Proteins/metabolism , Male , Behavior, Animal/drug effects
3.
Cancer Med ; 12(15): 15998-16010, 2023 08.
Article in English | MEDLINE | ID: mdl-37409360

ABSTRACT

OBJECTIVE: Immunotherapy extensively treats advanced non-small-cell lung cancer (NSCLC). Although immunotherapy is generally better tolerated than chemotherapy, it can cause multiple immune-related adverse events (irAEs) involving multiple organs. Checkpoint inhibitor-related pneumonitis (CIP) is a relatively uncommon irAE that, in severe cases, can be fatal. Potential risk factors for the occurrence of CIP are currently poorly understood. This study sought to develop a novel scoring system for predicting the risk of CIP based on a nomogram model. METHODS: We retrospectively collected advanced NSCLC patients who received immunotherapy at our institution between January 1, 2018, and December 30, 2021. All patients who met the criteria were randomly divided into the training set and testing set (in a ratio of 7:3), and cases fulfilling the CIP diagnostic criteria were screened. The patients' baseline clinical characteristics, laboratory tests, imaging, and treatment information were extracted from the electronic medical records. The risk factors associated with the occurrence of CIP were identified based on the results of logistic regression analysis on the training set, and a nomogram prediction model was developed. The discrimination and prediction accuracy of the model was evaluated using the receiver operating characteristic (ROC) curve, the concordance index (C-index), and the calibration curve. Decision curve analysis (DCA) was used to evaluate the clinical applicability of the model. RESULTS: The training set comprised 526 (CIP: 42 cases), and the testing set comprised 226 (CIP: 18 cases) patients, respectively. In the training set, the final multivariate regression analysis revealed that age (p = 0.014; odds ratio [OR] = 1.056; 95% Confidence Interval [CI] =1.011-1.102), Eastern Cooperative Oncology Group performance status (p = 0.002; OR = 6.170; 95% CI = 1.943-19.590), history of prior radiotherapy (p < 0.001; OR = 4.005; 95% CI = 1.920-8.355), baseline white blood cell count (WBC) (p < 0.001; OR = 1.604; 95% CI = 1.250-2.059), and baseline absolute lymphocyte count (ALC) (p = 0.034; OR = 0.288; 95% CI = 0.091-0.909) were identified as independent risk factors for the occurrence of CIP. A prediction nomogram model was developed based on these five parameters. The area under the ROC curve and C-index of the prediction model in the training set and testing set were 0.787 (95% CI: 0.716-0.857) and 0.874 (95% CI: 0.792-0.957), respectively. The calibration curves are in good agreement. The DCA curves indicate that the model has good clinical utility. CONCLUSION: We developed a nomogram model that proved to be a good assistant tool for predicting the risk of CIP in advanced NSCLC. This model has the potential power to help clinicians in making treatment decisions.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pneumonia , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Nomograms , Retrospective Studies , Pneumonia/chemically induced , Pneumonia/diagnosis , Pneumonia/epidemiology
4.
Front Oncol ; 13: 1125592, 2023.
Article in English | MEDLINE | ID: mdl-37519821

ABSTRACT

Objective: Risk factors of new-onset atrial fibrillation (NOAF) in advanced lung cancer patients are not well defined. We aim to construct and validate a nomogram model between NOAF and advanced lung cancer. Methods: We retrospectively enrolled 19484 patients with Stage III-IV lung cancer undergoing first-line antitumor therapy in Shanghai Chest Hospital between January 2016 and December 2020 (15837 in training set, and 3647 in testing set). Patients with pre-existing AF, valvular heart disease, cardiomyopathy were excluded. Logistic regression analysis and propensity score matching (PSM) were performed to identify predictors of NOAF, and nomogram model was constructed and validated. Results: A total of 1089 patients were included in this study (807 in the training set, and 282 in the testing set). Multivariate logistic regression analysis showed that age, c-reactive protein, centric pulmonary carcinoma, and pericardial effusion were independent risk factors, the last two of which were important independent risk factors as confirmed by PSM analysis. Nomogram included independent risk factors of age, c-reactive protein, centric pulmonary carcinoma, and pericardial effusion. The AUC was 0.716 (95% CI 0.661-0.770) and further evaluation of this model showed that the C-index was 0.716, while the bias-corrected C-index after internal validation was 0.748 in the training set. The calibration curves presented good concordance between the predicted and actual outcomes. Conclusion: Centric pulmonary carcinoma and pericardial effusion were important independent risk factors for NOAF besides common ones in advanced lung cancer patients. Furthermore, the new nomogram model contributed to the prediction of NOAF.

5.
DNA Res ; 30(2)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36882113

ABSTRACT

Phrynocephalus forsythii is a viviparous sand lizard that is endemic to the Tarim Basin with a broad altitudinal range of 872-3,100 m. Such variation in altitude and ecological variables can offer an opportunity to uncover genetic mechanisms of ectothermic adaptation to extreme environments at high- and low-altitude. Furthermore, the evolutionary relationship of karyotype with two different chromosome numbers (2n = 46 or 2n = 48) in the Chinese Phrynocephalus is unclear. In this study, a chromosome-level reference genome of P. forsythii was assembled. The genome assembly size was 1.82 Gb with a contig N50 length of 46.22 Mb, 20,194 protein-coding genes were predicted and 95.50% of these genes were annotated in functional public databases. After cluster contigs into chromosome level using Hi-C paired-end reads, we found that two chromosomes of P. forsythii were originated from one ancestral chromosome of species with 46 chromosomes. Comparative genomic analysis revealed that numerous characteristics associated with high- or low-altitude adaptation, including energy metabolism pathways, hypoxic adaptation, and immune, exhibit rapid changes or show signals of positive selection in the P. forsythii genome. This genome provides an excellent genome resource for the study of the karyotype evolution and ecological genomics of Phrynocephalus.


Subject(s)
Chromosomes , Lizards , Animals , Sequence Analysis, DNA , Genome , Genomics , Lizards/genetics , Phylogeny
6.
Adv Med Sci ; 68(1): 86-93, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36801676

ABSTRACT

PURPOSE: There is an urgent need to explore the use of plasma-derived exosomal long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) as potential biomarkers to select the most suitable patient population to receive immunotherapy for advanced NSCLC with no actionable molecular markers. PATIENTS AND METHODS: In the present study, 7 patients with advanced NSCLC who received nivolumab were enrolled for molecular studies. Plasma-derived exosomal lncRNAs/mRNAs expression profiles differed between patients exhibiting differential immunotherapy efficacy. RESULTS: In the non-responders, 299 differentially expressed exosomal mRNAs and 154 lncRNAs were significantly upregulated. In GEPIA2, 10 mRNAs were upregulated in the NSCLC patients compared to that of the normal population. The up-regulation of CCNB1 related to the cis-regulation of lnc-CENPH-1 and lnc-CENPH-2. KPNA2, MRPL3, NET1 and CCNB1 were trans-regulated by lnc-ZFP3-3. In addition, IL6R exhibited a trend of increased expression in the non-responders at baseline, and this expression was further downregulated after treatment in responders. The association between CCNB1 with lnc-CENPH-1 and lnc-CENPH-2, as well as the lnc-ZFP3-3-TAF1 pair, may represent potential biomarkers of poor immunotherapy efficacy. Patients may obtain increased effector T cell function when IL6R is suppressed by immunotherapy. CONCLUSIONS: Our study suggests that plasma-derived exosomal lncRNA and mRNA expression profiles differ between responders and non-responders to nivolumab immunotherapy. Lnc-ZFP3-3-TAF1-CCNB1 pair and IL6R might be key factors predicting efficiency of immunotherapy. Large scale clinical studies seem warranted to further validate the potential of plasma-derived exosomal lncRNAs and mRNAs as a biomarker to aid the selection of NSCLC patients for nivolumab immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Nivolumab/therapeutic use , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Immunotherapy
7.
Cancers (Basel) ; 14(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36551618

ABSTRACT

Small-cell lung cancer (SCLC), representing 15-20% of all lung cancers, is an aggressive malignancy with a distinct natural history, poor prognosis, and limited treatment options. We have previously identified Schwann cells (SCs), the main glial cells of the peripheral nervous system, in tumor tissues and demonstrated that they may support tumor spreading and metastasis formation in the in vitro and in vivo models. However, the role of SCs in the progression of SCLC has not been investigated. To clarify this issue, the cell proliferation assay, the annexin V apoptosis assay, and the transwell migration and invasion assay were conducted to elucidate the roles in SCLC of tumor-associated SCs (TA-SCs) in the proliferation, apoptosis, migration, and invasion of SCLC cells in vitro, compared to control group. In addition, the animal models to assess SC action's effects on SCLC in vivo were also developed. The result confirmed that TA-SCs have a well-established and significant role in facilitating SCLC cell cancer migration and invasion of SCLC in vitro, and we also observed that SC promotes tumor growth of SCLC in vivo and that TA-SCs exhibited an advantage and show a repair-like phenotype, which allowed defining them as tumor-associated repair SCs (TAR-SCs). Potential molecular mechanisms of pro-tumorigenic activity of TAR-SCs were investigated by the screening of differentially expressed genes and constructing networks of messenger-, micro-, and long- non-coding RNA (mRNA-miRNA-lncRNA) using DMS114 cells, a human SCLC, stimulated with media from DMS114-activated SCs, non-stimulated SCs, and appropriate controls. This study improves our understanding of how SCs, especially tumor-activated SCs, may promote SCLC progression. Our results highlight a new functional phenotype of SCs in cancer and bring new insights into the characterization of the nervous system-tumor crosstalk.

8.
Front Cell Infect Microbiol ; 12: 980917, 2022.
Article in English | MEDLINE | ID: mdl-36072226

ABSTRACT

Cryptosporidium spp. are common parasitic pathogens causing diarrhea in humans and various animals. Fur animals are widely farmed in Shandong Province, China, but the prevalence and genetic identity of Cryptosporidium spp. in them are unclear. In this study, 1,211 fecal samples were collected from 602 minks, 310 raccoon dogs and 299 foxes on two farms in Shandong and analyzed for Cryptosporidium spp. by nested PCR and sequence analyses of the small subunit rRNA gene. The overall infection rate of Cryptosporidium spp. was 31.5% (381/1,211), with a higher infection rate in raccoon dogs (37.7%, 117/310) than in foxes (32.4%, 97/299) and minks (27.7%, 167/602). By age, the highest infection rates of Cryptosporidium spp. were observed in raccoon dogs of 1-2 months, minks of 5-6 months, and foxes of > 12 months. Three Cryptosporidium species and genotypes were detected, including C. canis (n = 279), C. meleagridis (n = 65) and Cryptosporidium mink genotype (n = 37). Among the three major host species, raccoon dogs were infected with C. canis only (n = 117), while foxes were infected with both C. canis (n = 32) and C. meleagridis (n = 65), and minks with C. canis (n = 130) and Cryptosporidium mink genotype (n = 37). Subtyping of C. canis by sequence analysis of the 60 kDa glycoprotein gene identified eight subtypes. They belonged to two known subtype families, XXa and XXd, and two novel subtype families XXf and XXg, with host adaptation at the subtype family level. Notably, C. canis from foxes was genetically distant from those in other hosts. Further subtyping analysis identified three subtypes (IIIeA21G2R1, IIIeA19G2R1 and IIIeA17G2R1) of C. meleagridis and two novel subtype families Xf and Xg of the Cryptosporidium mink genotype. The presence of zoonotic C. canis subtypes in raccoon dogs and C. meleagridis subtypes in foxes suggests that these fur animals might be potential reservoirs for human-pathogenic Cryptosporidium spp.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Animals , China/epidemiology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidium/genetics , Farms , Foxes/parasitology , Host Adaptation , Humans , Mink/parasitology , Raccoon Dogs/parasitology
9.
Transl Lung Cancer Res ; 11(4): 607-616, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35529793

ABSTRACT

Background: Immune checkpoint inhibitor (ICI) therapy is an emerging type of treatment for lung cancer (LC). However, hyperprogressive disease (HPD) has been observed in patients treated with ICIs that lacks a prognostic prediction model. There is an urgent need for a simple and easily implementable predictive model to predict the occurrence of HPD. This study aimed to establish a novel scoring system based on a nomogram for the occurrence of HPD. Methods: We retrospectively identified 1473 patients with stage III-IV LC or inoperable stage I-II LC (1147 in training set, and 326 in testing set), who had undergone ICI therapy at the Shanghai Chest Hospital between January 2017 and March 2022. Available computed tomography (CT) data from the previous treatment, before ICI administration, and at least 2 months after the first the course of ICI administration is collected to confirm HPD. Data from these patients' common blood laboratory test results before ICI administration were analyzed by the univariable and multivariable logistic regression analysis, then used to develop nomogram predictive model, and made validation in testing set. Results: A total of 1,055 patients were included in this study (844 in the training set, and 211 in the testing set). In the training set, 93 were HPD and 751were non-HPD. Multivariate logistic regression analyses demonstrated that lactate dehydrogenase [LDH, P<0.001; odds ratio (OR) =0.987; 95% confidence interval (CI): 0.980-0.995], mean corpuscular hemoglobin concentration (MCHC, P=0.038; OR =1.021; 95% CI: 1.003-1.033), and erythrocyte sedimentation rate (ESR, P=0.012; OR =0.989; 95% CI: 0.977-0.997) were significantly different. The prediction model was established and validated based on these 3 variables. The concordance index were 0.899 (95% CI: 0.859-0.918) and 0.924 (95% CI: 0.866-0.983) in training set and testing set, and the calibration curve was acceptable. Conclusions: This model, which was developed from a laboratory examination of LC patients undergoing ICI treatment, is the first nomogram model to be developed to predict HPD occurrence and exhibited good sensitivity and specificity.

10.
Acta Pharmacol Sin ; 43(1): 157-166, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33758355

ABSTRACT

Long noncoding RNAs (lncRNAs) are involved in a variety of cancers, but the role of LncRNA DUBR in lung adenocarcinoma (LUAD), the most prevalent form of lung cancer, remains unclear. In this study we investigated the expression of DUBR in LUAD to ascertain its association with the clinical pathology and prognosis of LUAD. Analysis of mRNA expression in The Cancer Genome Atlas (TCGA) LUAD database and in-house LUAD cohort (n = 94) showed that DUBR was significantly downregulated in LUAD, and was associated with poor prognosis. In LUAD cell lines (H1975, A549), overexpression of DUBR significantly suppressed the migration and invasion of the LUAD cells. We demonstrated that c-Myc could bind to the promoter of DUBR, and transcriptionally suppressed its expression. Knockdown of c-Myc almost completely blocked the invasion and migration of LUAD cells, whereas knockdown of DUBR partially rescued c-Myc-knockdown suppressed cell migration and invasion. Furthermore, DUBR overexpression significantly increased the expression of a downstream protein of DUBR, zinc finger, and BTB domain containing 11 (ZBTB11), in H1975 and A549 cells; knockdown of ZBTB11 partially rescued the DUBR-overexpression suppressed cell migration and invasion; knockdown of c-Myc significantly upregulated the expression of ZBTB11 in LUAD cells. Finally, we revealed that DUBR/ZBTB11 axis suppressed oxidative phosphorylation in LUAD cells. In short, we demonstrate that c-Myc/DUBR/ZBTB11 axis suppresses migration and invasion of LUAD by attenuating cell oxidative phosphorylation, which provides new insights into the regulatory mechanism of DUBR.


Subject(s)
Adenocarcinoma of Lung/metabolism , Lung Neoplasms/metabolism , RNA, Long Noncoding/metabolism , Adenocarcinoma of Lung/diagnosis , BTB-POZ Domain , Cell Movement , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Humans , Lung Neoplasms/diagnosis , Molecular Structure , Oxidative Phosphorylation , RNA, Long Noncoding/genetics , Structure-Activity Relationship , Transcription Factors/metabolism
11.
J Thorac Dis ; 13(8): 4885-4893, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34527327

ABSTRACT

BACKGROUND: The purpose of this study was to retrospectively evaluate the clinical value of an electromagnetic navigation system for CT-guided percutaneous lung biopsy of peripheral lung lesions. METHODS: This was a retrospective study. Patients with peripheral lung lesions in our institution between January 2019 and December 2020, who underwent lung biopsy assisted by the electromagnetic navigation system were included in Group A, and those who underwent lung biopsy using conventional CT-guided percutaneous lung biopsy were included in Group B. The general features and clinical and technical information of each patient were collected and evaluated in both groups. RESULTS: A total of 141 patients were included in Group A (78 males and 63 females; median age, 65 years; range, 32-79 years), and 96 patients were included in group B (57 males and 39 females; median age, 65 years; range, 34-80 years). The technical success rate was 100% in both groups. The technical efficacy rate was 92.9% and 90.6% in Groups A and B (P=0.525), respectively. There was no significant difference in surgical time and the number of CT scans between the two groups, and only grade 1-2 complications occurred in the patients. CONCLUSIONS: The electromagnetic navigation system is an effective and safe auxiliary tool for CT-guided percutaneous lung biopsy of peripheral lung lesions.

12.
Ann Transl Med ; 9(9): 779, 2021 May.
Article in English | MEDLINE | ID: mdl-34268392

ABSTRACT

BACKGROUND: Fast progression (FP), hyperprogressive disease (HPD), and early death (ED) are the newly reported cancer progression patterns in response to immune checkpoint inhibitor (ICI) treatment. This study aimed to investigate the clinical and genomic characteristics of FP, HPD, and ED following the ICI treatment of advanced non-small cell lung cancer (NSCLC). METHODS: We retrospectively reviewed 117 patients with advanced NSCLC who were treated with ICIs from March 2017 to October 2019. FP was defined as (I) time to treatment failure (TTF) <1.5 months; and (II) ≥50% increase in the sum of the longest diameter (SLD) of target lesions. HPD was defined as (I) TTF <2 months; and (II) ≥50% change in tumor growth rate compared with before ICI initiation. ED was defined as overall survival (OS) <3 months. Tissue samples from 18 FP/HPD/ED patients and 5 partial response (PR) patients were subjected to genomic profiling. Genomic data from 693 tumor mutational burden- and histology-matched lung cancer samples were retrieved from an internal database as a control. RESULTS: FP, HPD, and ED occurred in 7.21%, 9.38%, and 11.97% patients, respectively. The progression-free survival was comparable among the 3 groups. The median overall survival for FP, HPD, and ED were 3.19, 11.2, and 1.84 months, respectively. The genomic landscape revealed 1 EGFR amplification, 1 ALK fusion, 6 KRAS mutations, 1 ERBB2 amplification, 1 MET amplification, and 1 RET fusion among the 18 patients with FP/HPD/ED. Compared with the Control group, ED patients showed higher mutation frequencies for KRAS (P<0.01), CDKN1B (P<0.01), and NTRK1 (P=0.04). Mutations in RAD54L (P=0.018) and MYC (P=0.04) were more common in FP patients; HPD patients showed more frequent RAD54L mutations (P<0.001). CONCLUSIONS: We demonstrated different genomic characteristics across different progression patterns following ICI treatment, which might assist clinicians in the prediction of a patient's response, identifying candidates for more effective ICI therapy.

13.
Int Immunopharmacol ; 98: 107734, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34175738

ABSTRACT

OBJECTIVE: Increasing evidence highlights the clinical implications of P2RY12 that belongs to the family of G-protein coupled receptors in carcinogenesis. Here, this study was designed to explore the associations between P2RY12 and tumor immune microenvironment of lung adenocarcinoma (LUAD). METHODS: Based on 352 LUAD samples from The Cancer Genome Atlas (TCGA), stromal and immune scores of each sample were estimated by ESTIMATE algorithm. Differential expression analysis was presented between stromal/immune high- and low-score groups. Protein-protein interaction (PPI) was then constructed by STRING database. Univariate and multivariate Cox regression analysis was utilized to screen prognosis-related factors. Co-expressed genes of P2RY12 were analyzed, followed by functional enrichment analysis. Furthermore, the correlation between P2RY12 and immune cell infiltrations was estimated using the TIMER database. P2RY12 expression was validated between 37 pairs of LUAD and normal tissues using RT-qPCR and immunohistochemistry. After overexpressing P2RY12, the proliferation and migration of A549 cells was detected by CCK-8 and scratch test. RESULTS: 145 up- and 102 down-regulated stromal- and immune-related mRNAs were identified for LUAD. Based on 145 up-regulated mRNAs, a PPI network was conducted, consisting of 95 nodes and 210 relationship pairs. Ten hub genes were then identified. Among them, CCR8, CNR2, CXCR5, GPR18, GPR31 and P2RY12 were in association with overall survival of patients with LUAD. After adjusting other variables, P2RY12 expression was an independent prognostic factor for LUAD. 288 co-expressed genes of P2RY12 were determined and these co-expressed genes were primarily involved in immune-related biological processes or pathways. Moreover, P2RY12 was significantly correlated with M2 macrophage and dendritic cell infiltration. After validation, P2RY12 expression was significantly decreased in LUAD than normal tissues. Its overexpression distinctly suppressed proliferation and migration of A549 cells. CONCLUSION: Our findings suggest that P2RY12 is an immune infiltration-related prognostic marker for LUAD.


Subject(s)
Adenocarcinoma of Lung/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/immunology , Lung Neoplasms/genetics , Receptors, Purinergic P2Y12/genetics , A549 Cells , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Datasets as Topic , Dendritic Cells/immunology , Female , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Prognosis , Protein Interaction Mapping , Protein Interaction Maps/genetics , Protein Interaction Maps/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology
14.
Front Oncol ; 11: 587744, 2021.
Article in English | MEDLINE | ID: mdl-33828969

ABSTRACT

Background: Lung cancer is a malignant disease that threatens human health. Hence, it is crucial to identify effective prognostic factors and treatment targets. Single-cell RNA sequencing can quantify the expression profiles of transcripts in individual cells. Methods: GSE117570 profiles were downloaded from the Gene Expression Omnibus database. Key ligand-receptor genes in the tumor and the normal groups were screened to identify integrated differentially expressed genes (DEGs) from the GSE118370 and The Cancer Genome Atlas Lung Adenocarcinoma databases. DEGs associated with more ligand-receptor pairs were selected as candidate DEGs for Gene Ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and survival analysis. In addition, we conducted validation immunohistochemical experiments on postoperative specimens of 30 patients with lung cancer. Results: A total of 18 candidate DEGs were identified from the tumor and the normal groups. The analysis of the GO biological process revealed that these DEGs were mainly enriched in wound healing, in response to wounding, cell migration, cell motility, and regulation of cell motility, while the KEGG pathway analysis found that these DEGs were mainly enriched in proteoglycans in cancer, bladder cancer, malaria, tyrosine kinase inhibitor resistance in Epidermal Growth Factor Receptor (EGFR), and the ERBB signaling pathway. Survival analysis showed that a high, rather than a low, expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) was associated with improved survival. Similarly, in postoperative patients with lung cancer, we found that the overall survival of the PECAM-1 high-expression group shows a better trend than the PECAM-1 low-expression group (p = 0.172). Conclusions: The candidate DEGs identified in this study may play some important roles in the occurrence and development of lung cancer, especially PECAM-1, which may present potential prognostic biomarkers for the outcome.

15.
Oncoimmunology ; 10(1): 1865670, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33537171

ABSTRACT

Somatic mutations of STK11 or KEAP1 are associated with poor clinical outcomes for advanced non-small-cell lung cancer (aNSCLC) patients receiving immune checkpoint inhibitors (ICIs), chemotherapy, or targeted therapy. Which treatment regimens work better for STK11 or KEAP1 mutated (SKmut) aNSCLC patients is unknown. In this study, the efficacy of atezolizumab versus docetaxel in SKmut aNSCLC was compared. A total of 157 SKmut aNSCLC patients were identified from POPLAR and OAK trials, who were tested by blood-based FoundationOne next-generation sequencing assay. Detailed clinical data and genetic alterations were collected. Two independent cohorts were used for biomarker validation (n = 30 and 20, respectively). Median overall survival was 7.3 months (95% confidence interval [CI], 4.8 to 9.9) in the atezolizumab group versus 5.8 months (95% CI, 4.4 to 7.2) in the docetaxel group (adjusted hazard ratio [HR] for death, 0.70; 95% CI, 0.49 to 0.99; P = .042). Among atezolizumab-treated patients, objective response rate, disease control rate, and durable clinical benefit were higher when blood tumor mutation burden (bTMB) and PD-L1 being higher (biomarker 1, n = 61) or with FAT3 mutation-positive tumors (biomarker 2, n = 83) than otherwise. The interactions for survival between these two biomarkers and treatments were significant, which were further validated in two independent cohorts. In SKmut patients with aNSCLC, atezolizumab was associated with significantly longer overall survival in comparison to docetaxel. Having FAT3 mutation or high TMB and PD-L1 expression potentially predict favorable response in SKmut patients receiving atezolizumab.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , AMP-Activated Protein Kinase Kinases , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Carcinoma, Non-Small-Cell Lung/drug therapy , Docetaxel/therapeutic use , Humans , Kelch-Like ECH-Associated Protein 1 , Lung Neoplasms/drug therapy , Mutation , NF-E2-Related Factor 2 , Protein Serine-Threonine Kinases
16.
Cancer Immunol Immunother ; 70(8): 2261-2274, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33506299

ABSTRACT

High expression of PD-L1 predicts PD-1/PD-L1 inhibitor benefit, meanwhile a few PD-L1-negative patients still benefit from these drugs. In this study, we aimed to explore the underlying cellular and molecular characteristics via single-cell sequencing. Before and after treatment with Pembrolizumab, peripheral blood mononuclear cells (PBMCs) were isolated via Ficoll gradient. Thereafter, single-cell RNA sequencing was performed, and clinical significance was validated with The Cancer Genome Atlas (TCGA) cohort. All 3423 cells of 16 clusters were classified into eight cell types, including NKG7+ T, NKG7+ NK, Naïve T, CDC1C+ dendritic cells, CD8+ T cells, B cells, macrophages and erythrocytes. Cell proportion, the clinical significance of differentially expressed genes and significant pathways of NKG7+ T, NKG7+ NK, Naïve T and CD8+ T cells were analyzed. Ubiquitin-mediated proteolysis/cell cycle/natural killer cell-mediated cytotoxicity were identified as PD-1 blockage-responsive pathways in NKG7+ NK cells. Apoptosis/Th1 and Th2 cell differentiation were proposed as Pembrolizumab-affected pathways in NKT cells. In gene level, ID2, PIK3CD, UQCR10, MATK, MZB1, IL7R and TRGC2 showed a significant correlation with PD-1 expression after TCGA dataset validation, which could possess potential as predictive markers for patients with PD-L1-negative lung squamous cell carcinoma who can benefit from Pembrolizumab.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , B7-H1 Antigen/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Aged, 80 and over , Apoptosis/drug effects , Apoptosis/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cells, Cultured , Cohort Studies , Erythrocytes/drug effects , Erythrocytes/immunology , Erythrocytes/metabolism , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lung/drug effects , Lung/immunology , Lung/metabolism , Lung Neoplasms/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Sequence Analysis, RNA/methods , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/metabolism
17.
Pediatr Investig ; 4(4): 236-241, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33376950

ABSTRACT

IMPORTANCE: In this study, we retrospectively investigated the seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies within serum samples from children in Beijing, China. These findings provide preliminary guidance regarding population susceptibility to SARS-CoV-2, which will aid in establishing policy toward coronavirus disease 2019 (COVID-19) prevention and control. OBJECTIVE: To understand the seropositivity of anti-SARS-CoV-2 IgM/IgG antibodies among children in Beijing, China, evaluate the susceptibility of children in Beijing to SARS-CoV-2, and provide prima facie evidence to guide SARS-CoV-2 prevention and control. METHODS: IgM/IgG antibody kits (colloidal gold) were used to conduct preliminary screening of SARS-CoV-2 IgM/IgG antibodies in serum samples of children who presented to Beijing Children's Hospital, Capital Medical University, having fever or requiring hospitalization, from March 2020 to August 2020. Statistical analysis of anti-SARS-CoV-2 antibody seropositivity was performed according to the children's general demographic characteristics, timing of admission to hospital, presence of pneumonia, and viral nucleic acid test results. RESULTS: The study included 19 797 children with both IgM and IgG antibody results. Twenty-four children had anti-SARS-CoV-2 IgM-positive results (positive rate of 1.2‰), twelve children had anti-SARS-CoV-2 IgG-positive results (positive rate of 0.6‰). Viral nucleic acid test results were negative for the above-mentioned children with positive antibody findings; during the study, two children exhibited positive viral nucleic acid test results, but their anti-SARS-CoV-2 IgM/IgG antibody results were negative. Anti-SARS-CoV-2 IgM antibody seropositivity was higher in the <1-year-old group than in the ≥6-year-old group. The rates of anti-SARS-CoV-2 IgM seropositivity was highest in August from March to August; IgG results did not significantly differ over time. The rates of anti-SARS-CoV-2 IgM or IgG seropositivity among children with and without suspected pneumonia did not significantly differ between groups. INTERPRETATION: During the study period, the rates of anti-SARS-CoV-2 IgM/IgG antibody seropositivity were low among children who presented to Beijing Children's Hospital, Capital Medical University. The findings suggest that children in Beijing are generally susceptible to SARS-CoV-2 infection; COVID-19 prevention and control measures should be strengthened to prevent disease in children.

18.
Ann Transl Med ; 8(20): 1297, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33209877

ABSTRACT

BACKGROUND: To characterize the effects of mutation subtypes and concomitant pathogenic mutations on progression-free survival (PFS) and overall survival (OS) in advanced non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) exon 20 insertion (ex20ins) mutations treated with chemotherapy. METHODS: We retrospectively found that patients who underwent genomic analysis from January 2017 to December 2019, and 101 patients with advanced EGFR ex20ins NSCLC were found. Binary logistic regression and Cox regression were used to determine how EGFR ex20ins mutation subtypes and concomitant mutations are associated with PFS and OS. RESULTS: A total of 8,348 patients were screened and 101 advanced EGFR ex20ins NSCLC patients were detected. Fifty-five patients who received chemotherapy (n=49) or TKIs (n=6) as first-line treatment were recorded for PFS and OS. PFS and OS were significantly longer in the platinum-based chemotherapy group (median PFS: 7.6 versus 5.6 months; P=0.001; median OS: 19.9 versus 7.4 months; P=0.027) than in the TKI group. Common mutations include Ala767_Val769dupAlaSerVal (A767_V769dupASV), Ser768_Asp770dupSerValAsp (S768_D770dupSVD) and Ala763_Tyr764insPheGlnGluAla (A763_Y764insFQEA). On binary logistic regression, common mutations (OR =17.04, 95% CI: 1.39-209.56; P=0.027) and number of concomitant mutations ≤1 (OR =34.67, 95% CI: 2.02-595.48; P=0.015) is significantly associated with durable clinical benefit (DCB). On multivariable analysis, common mutations (HR =0.26, 95% CI: 0.0.10-0.63; P=0.003) and the number of concomitant mutations ≤1 (HR =0.33, 95% CI: 0.15-0.73; P=0.006) were significantly associated with longer PFS. CONCLUSIONS: Common mutations and the number of concomitant mutations ≤1 correlate with a biomarker that predicts benefit from chemotherapy and confers excellent prognosis for advanced patients with advanced EGFR ex20ins NSCLC. Patients with common mutations and with only one concomitant mutation had the greatest PFS and patients with uncommon mutations, and with over one concomitant mutation had the worst prognosis.

19.
Lung Cancer ; 149: 17-22, 2020 11.
Article in English | MEDLINE | ID: mdl-32949827

ABSTRACT

OBJECTIVES: Mesenchymal-epithelial transition (MET) amplification is a rare gene alteration in lung cancer. The aim of this study was to investigate the clinical characteristics of MET amplification in lung cancer and the response to crizotinib by subsets of patients with MET amplification detected by next-generation sequencing (NGS). PATIENTS AND METHODS: We collected NGS sequencing data for patients with MET amplification in our institution from January 2018 to April 2019. The efficacy of crizotinib in MET amplification was retrospectively analyzed. RESULTS: A total of 2694 patients received NGS tests, 3.27 % (82/2507) of patients had primary MET amplification, and acquired MET amplification accounted for 16.04 % (30/187) of re-biopsy patients. Only 19 patients received monotherapy with crizotinib. In survival analysis, ten patients with copy number greater than 4 (CN > 4) had longer median PFS (mPFS) (4.76 months; 95 %CI: 1.67-7.85 months) compared with other nine patients (CN ≤ 4) (2.10 months; 95 %CI: 1.53-2.68 months; P = 0.063), but failed to get a statistical significance. No significant differences were observed between median PFS (mPFS) of the patients with primary and acquired MET amplification (4.04 months vs 2.76 months; P = 0.310). CONCLUSIONS: Primary and acquired MET amplification were detected in 3.27 % and 16.04 % of lung cancer patients, respectively. Patients with CN > 4 seemed to have longer PFS after crizotinib treatment. No significant differences in PFS were observed between patients with primary and acquired MET amplification.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Crizotinib/therapeutic use , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Retrospective Studies
20.
Oncoimmunology ; 9(1): 1731072, 2020.
Article in English | MEDLINE | ID: mdl-32158623

ABSTRACT

A significant association between high blood-based tumor mutational burden (bTMB) and improved progression-free survival (PFS) was observed in advanced non-small cell lung cancer (NSCLC) receiving atezolizumab. However, this result was unrepeatable in a recent prospective study. We hypothesized that there might be a non-linear association between bTMB and survival. This study used the clinical and genetic data from POPLAR (n = 105, training set) and OAK (n = 324, validation set) trials. The non-linear association between bTMB and survival was assessed using restricted cubic spline (RCS). The cutoff values for bTMB were calculated via X-tile software. Non-linear relationships were observed between bTMB and PFS and overall survival (OS) in RCS plots (both Pnon-linearity < 0.001). The optimal cutoff values of bTMB for predicting PFS and OS were 7 and 14 mutations/Mb, respectively. The median PFS and OS of patients with low and high bTMB were significantly longer than those of patients with medium bTMB in the training, validation, and combined sets. Low and high bTMB were also associated with longer PFS and OS in high-programmed death-ligand 1 (PD-L1) expression population. In conclusion, there was a positive non-linear association between bTMB and survival in NSCLC patients receiving atezolizumab. Patients with low bTMB could also derive benefit from immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Antibodies, Monoclonal, Humanized , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Lung Neoplasms/drug therapy , Mutation , Prognosis , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...