Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Res ; 246: 118159, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38218519

ABSTRACT

Zoogloea sp. MFQ7 achieved excellent denitrification of 91.71% at ferrous to manganous ratio (Fe/Mn) of 3:7, pH of 6.5, nitrate concentration of 25 mg L-1 and carbon to nitrogen ratio of 1.5. As the Fe/Mn ratio increasd, the efficiency of nitrate removal gradually decreased, indicating that strain MFQ7 had a higher affinity for Mn2+ than Fe2+. In situ generated biogenic Fe-Mn oxides (BFMO) contained many iron-manganese oxides (MnO2, Mn3O4, FeO(OH), Fe2O3, and Fe3O4) as well as reactive functional groups, which play an significant part in tetracycline (TC) and cadmium (Cd2+) adsorption. The adsorption of TC and Cd2+ by BFMO can better fit the pseudo-second-order and Langmuir models. In addition, multiple characterization results of before and after adsorption indicated that the removal mechanism of BFMO on TC and Cd2+ was probably surface complexation adsorption and redox reactions.


Subject(s)
Cadmium , Ferric Compounds , Oxides , Oxides/chemistry , Nitrates , Manganese Compounds/chemistry , Denitrification , Tetracycline , Anti-Bacterial Agents , Organic Chemicals , Adsorption
2.
Environ Sci Technol ; 58(1): 683-694, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38102081

ABSTRACT

The coculture theory that promotes denitrification relies on effectively utilizing the resources of low-efficiency denitrification microbes. Here, the strains Streptomyces sp. PYX97 and Streptomyces sp. TSJ96 were isolated and showed lower denitrification capacity when cultured individually. However, the coculture of strains PYX97 and TSJ96 enhanced nitrogen removal (removed 96.40% of total nitrogen) and organic carbon reduction (removed 92.13% of dissolved organic carbon) under aerobic conditions. Nitrogen balance analysis indicated that coculturing enhanced the efficiency of nitrate converted into gaseous nitrogen reaching 70.42%. Meanwhile, the coculturing promoted the cell metabolism capacity and carbon source metabolic activity. The coculture strains PYX97 and TSJ96 thrived in conditions of C/N = 10, alkalescence, and 150 rpm shaking speed. The coculturing reduced total nitrogen and CODMn in the raw water treatment by 83.32 and 84.21%, respectively. During this treatment, the cell metabolic activity and cell density increased in the coculture strains PYX97 and TSJ96 reactor. Moreover, the coculture strains could utilize aromatic protein and soluble microbial products during aerobic denitrification processes in raw water treatment. This study suggests that coculturing inefficient actinomycete strains could be a promising approach for treating polluted water bodies.


Subject(s)
Actinobacteria , Denitrification , Aerobiosis , Actinobacteria/metabolism , Actinomyces/metabolism , Carbon , Coculture Techniques , Nitrates/metabolism , Nitrogen , Nitrification
3.
Bioresour Technol ; 385: 129422, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37406832

ABSTRACT

In this study, the SMX degrading strain Proteus mirabilis sp. ZXY4 with surfactant manufacturing potential was isolated from sludge utilizing blood agar and CTAB agar plate. FTIR analysis indicated that the biosurfactant generated by strain ZXY4 was glycolipid. 3D-EEM demonstrated that SMX biodegradation was strongly connected to biosurfactants, the synergistic effect of biodegradation and biosurfactant made strain ZXY4 have excellent SMX degradation performance. Under the optimal conditions of inoculation dosage of 15%, temperature of 30 ℃, pH of 7 and initial SMX concentration of 5 mg L-1, strain ZXY4 could completely degrade SMX within 24 h. SMX biodegrades at low concentrations (less than5 mg L-1) followed by the zero-order kinetic model, high concentration (>5 mg L-1) is more consistent with the first-order kinetic model. LC-MS analysis revealed 14 SMX degradation intermediates, and five potential biodegradation mechanisms were postulated. The findings provide new insights into the biodegradation of SMX.


Subject(s)
Sulfamethoxazole , Water Pollutants, Chemical , Proteus mirabilis/metabolism , Surface-Active Agents , Agar , Biotransformation , Water Pollutants, Chemical/metabolism
4.
Environ Technol ; : 1-13, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37452659

ABSTRACT

Reactive black 5 (RBk5) is a refractory azo dye that constitutes a serious threat to the environment and humans. Herein, natural bornite (Nbo) was utilized to activate persulfate (PDS) for the RBk5 removal. The particle size of the Nbo catalyst was optimized and the RBk5 degradation rate constant that responded positively to the particle size of the Nbo catalyst was exhibited. Then, the operational factors affecting RBk5 removal were comprehensively investigated. With the addition of 1.5 g L-1 Nbo and 1.5 mM PDS, 99.05% of the RBk5 (20 mg L-1) was removed in 150 min compared with 0.46% removal with PDS only, which was caused by the additional reactive oxygen species (ROS) produced by the synergistic action of Fe-Cu bimetallic metal and reductive sulfur species. The Nbo catalyst presented high stability and reusability toward RBk5 removal. Identification of reactive oxygen species revealed that SO4⋅-, ·OH, O2⋅- and 1O2 collectively participated in RBk5 removal. Additionally, a possible degradation pathway for RBk5 was proposed, including cleavage of the azo, C-S and S-O bonds, hydroxylation, hydrolyzation, direct oxidation and other pathways. This work developed a highly effective and low-cost natural mineral-based bimetallic sulfide material for PDS activation for the degradation of contaminants and environmental remediation.

5.
Environ Res ; 235: 116661, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37451570

ABSTRACT

There is an urgent demand to investigate mechanisms for the improvement of denitrification in carbon-deficient environment, which will effectively reduce the eutrophication in water bodies polluted by nitrate. In this study, denitrifying bacterium Comamonas sp. YSF15 was used to explore the differences in different carbon source concentrations, with the complete genome, metabolomics, and other detecting methods. Results showed that strain YSF15 was able to achieve efficient denitrification, with complete pathways for denitrification and central carbon metabolism. The carbon deficiency prompted the bacteria to use extracellular amino acid-like metabolites initially, to alleviate inhibition and maintain bioactivity, which also facilitated glycogen storage. The biogenic inhibitors (tautomycin, navitoclax, and glufosinate) at extremely low level potentially favored the competitiveness and intraspecific utilization of extracellular polysaccharides (PS). Optimal solutions for bioaggregation in carbon-deficient condition are achieved by regulating the hydrophobicity, and hydrogen bond in extracellular metabolites. The strategy contributes to the maintenance of bioactivity and adaptation to carbon deficiency. Overall, this study provides a new perspective on understanding the denitrification strategies in carbon-deficient environment, and helps to improve the nitrate removal in low-carbon wastewater treatment.


Subject(s)
Comamonas , Wastewater , Nitrates/analysis , Comamonas/metabolism , Denitrification , Carbon/chemistry , Nitrogen/metabolism , Bacteria/metabolism , Bioreactors/microbiology
6.
J Hazard Mater ; 458: 131929, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37418965

ABSTRACT

Performic acid (PFA) has received increasing attention in water disinfection due to its high disinfection efficiency and fewer formation of disinfection by-products. However, the inactivation of fungal spores by PFA has not been investigated. In this study, the results showed that the log-linear regression plus tail model adequately described the inactivation kinetic of fungal spores with PFA. The k values of A. niger and A. flavus with PFA were 0.36 min-1 and 0.07 min-1, respectively. Compared to peracetic acid, PFA was more efficient in inactivating fungal spores and caused more serious damage on cell membrane. Compared to neutral and alkaline conditions, acidic environments demonstrated a greater inactivation efficiency for PFA. The increase of PFA dosage and temperature had a promoting effect on the inactivation efficiency of fungal spores. PFA could kill the fungal spores by damaging cell membrane and penetration of cell membranes. In real water, the inactivation efficiency declined as a result of the existence of background substances such as dissolved organic matter. Moreover, the regrowth potential of fungal spores in R2A medium were severely inhibited after inactivation. This study provides some information for PFA to control fungi pollution and explores the mechanism of PFA inactivation.


Subject(s)
Disinfectants , Peracetic Acid , Disinfectants/analysis , Water , Spores, Fungal , Disinfection/methods
7.
Water Res ; 243: 120378, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37482005

ABSTRACT

Peroxymonosulfate(PMS)-based advanced oxidation process have been recognized as efficient disinfection processes. This study comprehensively investigated the role of sulfate radical (SO4•-) and hydroxyl radical (•OH)-driven disinfection of bacteria and fungal spores by the PMS/metals ions (Me(II)) systems and modeled the CT value based on the relationship between survival and ∫[Radical]dt, with the aim to provide an accurate and quantitative kinetic data of inactivation processes. The results indicated that •OH played a more central role than SO4•- in the inactivation process, and bacteria were more vulnerable to radical attack than fungal spores due to the differences in antioxidant mechanisms and external structures. The k value of •OH -induced inactivation of E. coli was approximately 3-fold higher than that of A. niger, and the shoulder length of •OH -induced inactivation of E. coli was closely 52-fold shorter than that of A. niger after treated with the PMS/Co(II) system. The morphological and biochemical changes revealed that PMS/Me(II) treatment caused membrane damage, intracellular ROS accumulation and esterase activity loss in microorganisms. This study significantly improved the understanding of the contribution of radicals in the process of microbial inactivation by PMS/Me(II) and would provide important implications for the further development of technologies to cope with the highly resistant fungal spores in drinking water.


Subject(s)
Hydroxyl Radical , Water Purification , Hydroxyl Radical/chemistry , Disinfection/methods , Spores, Fungal , Kinetics , Escherichia coli , Peroxides/chemistry , Oxidation-Reduction , Bacteria , Water Purification/methods
8.
Environ Res ; 231(Pt 3): 116307, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37268205

ABSTRACT

The pollution problem of oxytetracycline (OTC) from wastewater becomes more serious, so an efficient, economical, and green adsorption material is urgently explored. In this study, the multilayer porous biochar (OBC) was prepared by coupling carbon nanotubes with iron oxide nanoparticles synthesized by Aquabacterium sp. XL4 to modify corncobs under medium temperature (600 °C) conditions. The adsorption capacity of OBC could reach 72.59 mg g-1 after preparation and operation parameters were optimized. In addition, various adsorption models suggested that OTC removal resulted from the combined effect of chemisorption, multilayer interaction, and disordered diffusion. Meanwhile, the OBC was fully characterized and exhibited a large specific surface area (237.51 m2 g-1), abundant functional groups, stable crystal structure, high graphitization, and mild magnetic properties (0.8 emu g-1). The OTC removal mechanisms mainly included electrostatic interactions, ligand exchange, π-π bonding reactions, hydrogen bonds, and complexation. pH and coexistence substance experiments revealed that the OBC possesses a wide pH adaptation range and excellent anti-interference ability. Finally, the safety and reusability of OBC were confirmed by repeated experiments. In summary, OBC as a biosynthetic material shows considerable potential for application in the field of purifying new pollution from wastewater.


Subject(s)
Nanotubes, Carbon , Oxytetracycline , Water Pollutants, Chemical , Oxytetracycline/chemistry , Wastewater , Adsorption , Magnetic Iron Oxide Nanoparticles , Water Pollutants, Chemical/analysis , Kinetics
9.
Sci Total Environ ; 884: 163859, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37142031

ABSTRACT

Despite the growing interest in using mixed-culture aerobic denitrifying fungal flora (mixed-CADFF) for water remediation, there is limited research on their nitrogen removal performance in low C/N polluted water bodies. To address this knowledge gap, we isolated three mixed-CADFFs from overlying water in urban lakes to evaluate their removal performance. The total nitrogen (TN) removal efficiencies were 93.60 %, 94.64 %, and 95.18 %, while the dissolved organic carbon removal efficiencies were 96.64 %, 95.12 %, and 96.70 % for mixed-CADFF LN3, LN7, and LN15, respectively in the denitrification medium under aerobic conditions at 48 h cultivation. The three mixed-CADFFs could utilize diverse types of low molecular weight carbon sources to drive the aerobic denitrification processes efficiently. The optimal C/N ratio for the mixed-CADFFs were C/N = 10, and then C/N = 15, 7, 5, and 2. The high-throughput sequencing analysis of three mixed-CADFFs indicated that Eurotiomycetes, Cystobasidiomycetes, and Sordariomycetes were the dominant class in the communities at class level. The network analysis showed that the rare fungal species, such as Scedosporium dehoogii Saitozyma, and Candida intermedia presented positively co-occurred with the TN removal and organic matter reduction capacity. Immobilization mixed-CADFFs treatment raw water experiments indicated that three mixed-CADFFs could reduce nearly 62.73 % of TN in the low C/N micro-polluted raw water treatment. Moreover, the cell density and cell metabolism indexes were also increased during the raw water treatment. This study will provides new insight into resource utilization of the mixed-culture aerobic denitrifying fungal community in field of environment restoration.


Subject(s)
Denitrification , Mycobiome , Aerobiosis , Nitrogen/metabolism , Carbon , Nitrates
10.
Environ Sci Pollut Res Int ; 23(15): 14898-907, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27072036

ABSTRACT

Microbe-assisted phytoremediation provides an effective approach to clean up heavy metal-contaminated soils. However, severe drought may affect the function of microbes in arid/semi-arid areas. Streptomyces pactum Act12 is a drought-tolerant soil actinomycete strain isolated from an extreme environment on the Qinghai-Tibet Plateau, China. In this study, pot experiments were conducted to assess the effect of Act12 on Cd tolerance, uptake, and accumulation in amaranth (Amaranthus hypochondriacus) under water deficit. Inoculated plants had higher Cd concentrations (root 8.7-33.9 %; shoot 53.2-102.1 %) and uptake (root 19.9-95.3 %; shoot 110.6-170.1 %) than non-inoculated controls in Cd-treated soil. The translocation factor of Cd from roots to shoots was increased by 14.2-75 % in inoculated plants, while the bioconcentration factor of Cd in roots and shoots was increased by 10.2-64.4 and 53.9-114.8 %, respectively. Moreover, inoculation with Act12 increased plant height, root length, and shoot biomass of amaranth in Cd-treated soil compared to non-inoculated controls. Physiochemical analysis revealed that Act12 enhanced Cd tolerance in the plants by increasing glutathione, elevating superoxide dismutase and catalase activities, as well as reducing malondialdehyde content in the leaves. The drought-tolerant actinomycete strain Act12 can enhance the phytoremediation efficiency of amaranth for Cd-contaminated soils under water deficit, exhibiting potential for application in arid and semi-arid areas.


Subject(s)
Amaranthus , Biodegradation, Environmental , Cadmium , Soil Pollutants , Streptomyces , Amaranthus/metabolism , Amaranthus/physiology , Cadmium/analysis , Cadmium/isolation & purification , Cadmium/metabolism , Soil Pollutants/analysis , Soil Pollutants/isolation & purification , Soil Pollutants/metabolism , Streptomyces/metabolism , Streptomyces/physiology , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...