Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 119: 154983, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37586161

ABSTRACT

BACKGROUND: Biancaea decapetala (Roth) O.Deg. (Fabaceae) is used to treat colds, fever, and rheumatic pain caused by inflammation. However, the mechanism underlying its anti-inflammatory properties remains unclear. PURPOSE: This study aimed to evaluate the anti-inflammatory activity of Biancaea decapetala extract (BDE) in vitro and in vivo and explore the possible underlying mechanism and potential targets. METHODS: The release of nitric oxide (NO) and inflammatory cytokines in LPS-stimulated RAW264.7 cells and rats were measured using Griess reagent and enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (H&E) staining was employed to examine the pathology of animal tissues. Transcriptome analysis was performed to screen the pathways related to BDE-mediated inhibition of inflammation, and the expression of related proteins was measured using real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, ELISA, and immunofluorescence methods. Surface Plasmon Resonance (SPR) and the Drug Affinity Reaction Target Stability (DARTS) method were used to verify whether BDE binds to TNF-α target protein, while a L929 cell model and NF-κB gene reporter systematic method were used to investigate the inhibitory effect of BDE on the activity of TNF-α protein. RESULTS: BDE inhibited the expression of TNF-α, IL-1ß, IL-6, and NO in RAW264.7 cells and rats, and improved the pathological changes in lung tissue. RNA-seq showed that BDE may regulate the TNF/Akt/NF-κB pathway to inhibit inflammation onset. BDE significantly downregulated the mRNA expression of TNF-α, IL-6, IL-1ß, and that of relevant proteins, including TNF-α, p-p65, p-Akt, p-IκBα. Furthermore, BDE inhibited the nuclear translocation of NF-κB (p65) and the activation of the Akt pathway by SC79. The L929 cell model, luciferase reporter gene analysis, DARTS, and SPR experiments showed that BDE may bind to TNF-α and inhibit the TNF-α-NF-κB pathway. CONCLUSION: BDE may target TNF-α to inhibit the TNF/Akt/NF-κB pathway, thereby attenuating inflammation. These findings reveal the anti-inflammatory effects and mechanisms of BDE and provide a theoretical basis for the further development and utilization of BDE.


Subject(s)
Fabaceae , NF-kappa B , Rats , Animals , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Lipopolysaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...