Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 21(3): 1149-1159, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38288708

ABSTRACT

The development of biomolecule delivery systems is essential for the treatment of various diseases such as cancer, immunological diseases, and metabolic disorders. For the first time, we found that SARS-CoV-2-encoded nonstructural protein 2 (NSP2) can be secreted from the cells, where it is synthesized. Brefeldin A and H89, inhibitors of ER/Golgi secretion pathways, did not inhibit NSP2 secretion. NSP2 is likely secreted via an unconventional secretory pathway. Moreover, both secreted and purified NSP2 proteins were able to traverse the plasma membrane barrier and enter both immortalized human umbilical vein endothelial cells and tumor cell lines. After entry, the NSP2 protein was localized in only the cytoplasm. Cytochalasin D, a potent inhibitor of actin polymerization, inhibited the entry of NSP2. NSP2 can carry other molecules into cells. Burkholderia lethal factor 1, a monomeric toxin from the intracellular pathogen Burkholderia pseudomallei, has demonstrated antitumor activity by targeting host eukaryotic initiation translation factor 4A. An NSP2-BLF1 fusion protein was translocated across the cellular membranes of Huh7 cells and mediated cell killing. By using different approaches, including protein purification, chemical inhibition, and cell imaging, we confirm that NSP2 is able to deliver heterologous proteins into cells. NSP2 can act as a potential delivery vehicle for proteins.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Endothelial Cells/metabolism , Cell Line, Tumor
2.
J Environ Manage ; 338: 117787, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36965422

ABSTRACT

The performance and electron (e-) transfer mechanisms of anaerobic and aerobic denitrification by strain Klebsiella were investigated in this study. The RT-PCR results demonstrated that the membrane bound nitrate reductase gene (narG) and Cu-nitrite reductase gene (nirK) were responsible for both aerobic and anerobic denitrification. The extreme low gene relative abundance of nirK might be responsible for the severe accumulation of NO2--N (nitrogen in the form of NO2- ion) under anaerobic condition. Moreover, the nitrite reductase (Nir) activity was 0.31 µg NO2--N min-1 mg-1 protein under anaerobic conditions, which was lower than that under aerobic conditions (0.38 µg NO2--N min-1 mg-1 protein). By using respiration chain inhibitors, the e- transfer pathways of anaerobic and aerobic denitrification of Klebsiella strain were constructed. Fe-S protein and Complex III were the core components under anaerobic conditions, while Coenzyme Q (CoQ), Complexes I and III played a key role in aerobic denitrification. Nitrogen assimilation was found to be the main way to generate NH4+-N (nitrogen in the form of NH4+ ion) during anaerobic denitrification, and also served as the primary nitrogen removal way under aerobic condition. The results of this study may help to improve the understanding of the core components of strain Klebsiella during aerobic and anaerobic denitrifications, and may suggest potential applications of the strain for nitrogen-containing wastewater.


Subject(s)
Denitrification , Klebsiella oxytoca , Klebsiella oxytoca/genetics , Klebsiella oxytoca/metabolism , Anaerobiosis , Electrons , Nitrogen Dioxide , Nitrites/metabolism , Nitrates , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Nitrogen/metabolism , Aerobiosis , Nitrification , Heterotrophic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...