Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Acta Neurol Belg ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607605

ABSTRACT

BACKGROUND: BRAT1 (BRCA1-associated ataxia telangiectasia mutated activator 1) is involved in many important biological processes, including DNA damage response and maintenance of mitochondrial homeostasis. Dysfunctional BRAT1 causes variable clinical phenotypes, which hinders BRAT1-related disease from recognition and diagnosis. METHODS: Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement was the guideline for this systematic review. MEDLINE was searched by terms ("BAAT1" and "BRAT1") from inception until June 21, 2022. RESULTS: Twenty-eight studies, screened out of 49 records, were included for data extraction. The data from fifty patients with mutated BRAT1 were collected. There are 3 high relevant phenotypes, 4 medium relevant phenotypes and 3 low relevant phenotypes. Eye-related abnormal features were most frequently reported: 27 abnormal features were observed. Thirty-nine kinds of pathogenic nucleotide change in BRAT1 were reported. Top three common mutations of BRAT1 were c.638_639insA (16 cases), c.1395G > A (5 cases) and c.294dupA (4 cases). Homozygous mutations in BRAT1 presented a more severe phenotype than those who are compound heterozygotes. CONCLUSIONS: This is the first comprehensive systematic review to present quantitative data about clinical characteristics of BRAT1-related disease, which helps doctors to recognize and diagnose it easier.

2.
Mil Med Res ; 11(1): 17, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475827

ABSTRACT

BACKGROUND: Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear. METHODS: Male and female C57BL/6 mice (8-12 weeks) and male cynomolgus monkeys (7-10 years old) were used in our experiments. Nerve injury-, inflammatory-, and chemotherapy-induced pathological pain models were established for this study. Behavioral tests of touch, mechanical pain, heat pain, and cold pain were performed in mice and nonhuman primates. Western blotting, immunostaining, co-immunoprecipitation, proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms. RESULTS: The results showed that EndoA2 was primarily distributed in neurofilament-200-positive (NF200+) medium-to-large diameter dorsal root ganglion (DRG) neurons of mice and humans. Loss of EndoA2 in mouse NF200+ DRG neurons selectively impaired the tactile and mechanical allodynia. Furthermore, EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons. Moreover, as an adaptor protein, EndoA2 also bound to kinesin family member 5B (KIF5B), which was involved in the EndoA2-mediated membrane trafficking process of Piezo2. Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents, and re-expression of EndoA2 rescued the MA currents. In addition, interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates. CONCLUSIONS: Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals. EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons. Our findings identify a potential new target for the treatment of mechanical pain.


Subject(s)
Acyltransferases , Hyperalgesia , Ion Channels , Touch , Animals , Female , Male , Mice , Hyperalgesia/pathology , Ion Channels/metabolism , Kinesins/metabolism , Mechanotransduction, Cellular/physiology , Mice, Inbred C57BL , Pain , Primates , Touch/physiology , Acyltransferases/metabolism
3.
J Mol Model ; 28(10): 324, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36129553

ABSTRACT

The compositional dependence of the atomic structure and glass-forming ability (GFA) was systematically studied in a binary alloy series Cu100-xZrx (x = 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10.0) by molecular dynamics simulations. Several structural analysis techniques are adopted to find a direct relationship between the atomic structures and GFA by minor Zr addition. The simulation results confirm that the difference among the critical cooling rates proves the enhancement of GFA. It is found that the Zr addition can enhance the icosahedra short-range order (SRO). From another side, in terms of MRO, the addition of Zr can enhance interpenetrating icosahedra connection which will give rise to the Bergman-icosahedra medium-range order, resulting in a more stable, more compact, and more complex structures, which is responsible for the enhanced GFA in CuZr alloys. Furthermore, the five-fold symmetry governs the formation of the amorphous state and may behave as a principal indication of the formation of the glass state during the cooling process. We also found a critical Zr content of 3%, below which the effect of Zr on the structures is not obvious. However, when the Zr content is higher than 3%, the Zr can rapidly change the structures of the liquid and glassy structure. These results are helpful for understanding the GFA of CuZr alloys.

4.
Neuroscience ; 502: 52-67, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35985504

ABSTRACT

Mechanical allodynia impinges on the life quality of patients. Hen Egg Lysozyme (HEL) is a substance extracted from eggs that is commonly used to inhibit bacterial activity. The role of HEL in regulating and treating pain is unclear. Here, we find that HEL selectively attenuates static mechanical allodynia of mice induced by complete Freund's adjuvant (CFA), spinal nerve ligation (SNL) and chemotherapeutic agent. RNA-seq screening reveals that CFA significantly reduces the expression of Parkin in dorsal root ganglion (DRG) neurons of mice, while pre-administration of HEL increases the expression of Parkin and remits the static mechanical allodynia induced by Parkin-siRNA. Moreover, HEL increases the interaction between nuclear respiratory factor 1 (NRF1) and histone acetyltransferase P300 and then enhances the NRF1 mediated histone acetylation in prkn promoter region in DRGs of mice. Further, Parkin interacts with mechanotransducing ion channel TACAN (Tmem120a) and knockdown of Parkin significantly increases the membrane trafficking of TACAN in sensory neurons of mice. While pre-administration of HEL inhibits the increased membrane trafficking of TACAN in sensory neurons of mice induced by Parkin-siRNA. In addition, pre-given of HEL also significantly attenuates the static mechanical allodynia induced by overexpression of TACAN in mice, and the effect of HEL can be blocked by Parkin-siRNA. This indicates that HEL increases the expression of Parkin through epigenetic mechanisms and then decreases TACAN membrane trafficking in sensory neurons to relieve static mechanical hypersensitivity. Therefore, we reveal a novel function of HEL, which is a potential substance for the treatment of static mechanical pain.


Subject(s)
Hyperalgesia , Nuclear Respiratory Factor 1 , Animals , Mice , Freund's Adjuvant , Histone Acetyltransferases/therapeutic use , Histones , Ion Channels , Pain/drug therapy , RNA, Small Interfering , Sensory Receptor Cells , Ubiquitin-Protein Ligases/genetics
5.
J Mol Model ; 28(9): 265, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35987879

ABSTRACT

The influence of the interatomic repulsive hardness (RH) on the microstructure and dynamics of CuZr metallic glass is studied by the molecular dynamics simulation method. By constructing potential energy functions that characterize different RH, we calculated their atomic diffusion coefficients, thermal expansion coefficients, radial distribution functions, fivefold symmetry order, and other related structural properties during the quenching process. We found that the atomic diffusion coefficients and thermal expansion coefficients decrease with RH, and the variation of radial distribution functions with temperatures becomes slower in softer RH. The softening RH is also accompanied by the enhancement of the icosahedral order in the liquids. Our results explain the experimental conclusion of "soft atoms make strong glasses" when considering the relation of the repulsive potential and liquid dynamics fragility.

7.
Inorg Chem ; 61(7): 3281-3287, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35138838

ABSTRACT

Chemotherapy is still an important and effective clinical treatment for cancer. However, individual drugs hardly achieve precise controlled release and targeted therapy, thus resulting in unavoidable side effects. Fortunately, the emergence of drug carriers is expected to solve the above problems. In this work, the MOF-on-MOF strategy was adopted to encapsulate DOX into double-layer NH2-MIL-88B to fabricate a core-shell-structured DOX@NH2-MIL-88B-On-NH2-MIL-88B (DMM) and then realize the pH and GSH dual-responsive controlled DOX release. Because of the core-shell structure, the drug-loading capacity of DMM reached 14.4 wt %, which was nearly twice that of DOX@NH2-MIL-88B (DM), and the controlled release performance of DMM was also improved at the same time, greatly improving the kinetics equilibrium time of DOX from 2 h (DM) to 16 h (DMM) at pH 5.0. Moreover, we found that DMM also possessed peroxidase-like catalytic activity under acidic conditions, which could catalyze H2O2 to produce •OH, exhibiting the potential chemodynamical treatment of cancer. Cell experiments showed that DMM had a significant inhibitory effect against 4T1 cancer cells, and the survival rate of 4T1 cells was less than 20% at 100 ppm.


Subject(s)
Hydrogen Peroxide
8.
J Sci Food Agric ; 102(1): 280-290, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34091920

ABSTRACT

BACKGROUND: A polysaccharide was purified in this study, which was acquired from the fermentation broth of Dendrobium officinale Kimura et Migo. We aimed to investigate the structural features and bioactivity of this polysaccharide. RESULTS: The polysaccharide was purified and the main polysaccharide fraction (i.e., DOP-1) was obtained. High-performance gel permeation chromatography (HPGPC) revealed that the molecular weight of DOP-1 was 447.48 kDa. Galactose, glucose and mannose were found to be present in DOP-1 via monosaccharide composition analysis, at a ratio of 1:1.79:6.71. Methylation and nuclear magnetic resonance spectroscopic analysis indicated that the backbone of DOP-1 was →4)-α-d-Glcp-(1 → 4)-α-d-Manp-(1 → 4)-α-d-Manp-(1 → 4,6)-α-d-Manp-(1→, and its repeating units were also preliminarily established. In vitro tests proved that DOP-1 not only protects RAW264.7 macrophages from the cytotoxic effect induced by lipopolysaccharide (LPS), but also inhibits cytokines (i.e., interleukin-6 and tumour necrosis factor-α) induced by LPS. DOP-1 demonstrated good scavenging activity in vitro toward 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals, as well as good metal chelating activity. Therefore, DOP-1 has potential antioxidant applications. CONCLUSION: The structural characteristics of DOP-1 support its favourable biological activities and lay a strong foundation for further exploration of its structure-activity relationships and activity development, providing experimental data for the development and utilisation of fermentation broth of D. officinale. © 2021 Society of Chemical Industry.


Subject(s)
Dendrobium/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Carbohydrate Sequence , Chromatography, Gel , Fermentation , Interleukin-6/genetics , Interleukin-6/metabolism , Macrophages/drug effects , Macrophages/metabolism , Magnetic Resonance Spectroscopy , Mice , Molecular Weight , Plant Extracts/isolation & purification , Polysaccharides/isolation & purification , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Mater Today Bio ; 13: 100180, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34927044

ABSTRACT

Controlling the crystal size and surface chemistry of MOF materials, and understanding their multifunctional effect are of great significance for the biomedical applications of MOF systems. Herein, we designed and synthesized a new anionic MOF, ZJU-64-NSN, which features 1D channels decorated with highly polarized thiadiazole groups, and its crystal size could be systematically tuned from 200 â€‹µm to 300 â€‹nm through a green and simple approach. As a result, the optimal nanosized ZJU-64-NSN is found to enable an ultrafast loading of cationic drug procainamide (PA) (21.2 â€‹wt% within 1 â€‹min). Moreover, the undesirable chemical stability of PA@ZJU-64-NSN is greatly improved by the surface coating of polyethylene glycol (PEG) biopolymer. The final drug delivery system PEG/PA@ZJU-64-NSN is found to effectively prevent PA from premature release under the harsh stomach environments due to the intense host-guest interaction, and mainly release PA to the targeted intestinal surroundings. Such controlled drug delivery is proved to be triggered by endogenic Na+ ions instead of H+ ions, well revealed by the study on the dynamics behavior of drug release and UV-Vis absorption spectrum. Good biocompatibility of ZJU-64-NSN and PEG-coated ZJU-64-NSN has been fully demonstrated by MTT assay as well as confocal microscopy imaging.

10.
J Food Sci Technol ; 58(10): 3780-3789, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34471301

ABSTRACT

This work proposes a novel potential source of antiallergens based on bioactive peptides. Cashew-nut protein hydrolysate with antiallergic activity was prepared from cashew nuts through protease treatment. The change in the antiallergic activity of cashew-nut protein hydrolysate during in vitro simulated digestion was investigated. Cashew-nut protein hydrolysates were prepared through treatment using five different enzymes, namely, Alcalase, Protamex, Neutrase, papain, and bromelin. According to the results of molecular weight distribution, more small molecular weight peptides could be obtained by selecting Alcalase protease than other proteases, and the degree of hydrolysis, trichloroacetic acid-soluble peptide yield and hyaluronidase inhibitory rate of the hydrolysate were 17.0 ± 61.52%, 26.28 ± 0.13% and 62.06% ± 5.07%, which were significantly higher than those of other proteases. Therefore, Alcalase is the most suitable protease for the preparation of cashew-nut hydrolysates. Cashew-nut protein hydrolysates prepared with Alcalase under optimum conditions were fractionated through ultrafiltration. Fractions with low molecular weight exhibited the highest hyaluronidase inhibitory rate (90.57%) among all fractions. The inhibition of hyaluronidase activity during digestion showed that cashew-nut protein hydrolysate III (CPH III) has persistent antiallergic activity. Therefore, CPH III could serve as a potential source of functional peptides with health-promoting effects.

11.
Nat Commun ; 12(1): 1401, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658516

ABSTRACT

Effective treatments for patients suffering from heat hypersensitivity are lacking, mostly due to our limited understanding of the pathogenic mechanisms underlying this disorder. In the nervous system, activating transcription factor 4 (ATF4) is involved in the regulation of synaptic plasticity and memory formation. Here, we show that ATF4 plays an important role in heat nociception. Indeed, loss of ATF4 in mouse dorsal root ganglion (DRG) neurons selectively impairs heat sensitivity. Mechanistically, we show that ATF4 interacts with transient receptor potential cation channel subfamily M member-3 (TRPM3) and mediates the membrane trafficking of TRPM3 in DRG neurons in response to heat. Loss of ATF4 also significantly decreases the current and KIF17-mediated trafficking of TRPM3, suggesting that the KIF17/ATF4/TRPM3 complex is required for the neuronal response to heat stimuli. Our findings unveil the non-transcriptional role of ATF4 in the response to heat stimuli in DRG neurons.


Subject(s)
Activating Transcription Factor 4/metabolism , Nociception/physiology , Sensory Receptor Cells/physiology , TRPM Cation Channels/metabolism , Activating Transcription Factor 4/genetics , Animals , Cell Membrane/metabolism , Chemokine CXCL12/metabolism , Ganglia, Spinal/cytology , Ganglia, Spinal/physiology , HEK293 Cells , Hot Temperature , Humans , Injections, Spinal , Kinesins/metabolism , Mice, Inbred C57BL , Mice, Mutant Strains , Patch-Clamp Techniques , Protein Transport , Receptors, CXCR4/metabolism , TRPM Cation Channels/genetics
12.
Pain ; 162(6): 1882-1896, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33433144

ABSTRACT

ABSTRACT: Adults are more likely to suffer from chronic pain than minors, and its underlying mechanism remains unclear. SIRT1 an important age-related protein with function of lifespan extension; whether SIRT1 plays a role in the different pain vulnerability of adult and juvenile remains unclear. Here, we found that the expression level of SIRT1 in dorsal root ganglia (DRG) was related to the pain vulnerability. After nerve injury, the expression of SIRT1 in DRG was decreased in adult rodents whereas increased in juvenile rodents. Differential manipulation of SIRT1 abolished the different pain vulnerability between adult and juvenile rodents. Furthermore, SIRT1 interacted with ClC-3 channel and mediated ClC-3 membrane trafficking and Cl- current in DRG neurons. Differential manipulation of ClC-3 also abolished the difference in pain vulnerability between adult and juvenile rodents. The different anti-inflammatory ability determined the different change trends of SIRT1 and ClC-3 trafficking contributed to the different pain vulnerability in adult and juvenile rodents. In addition, the serum SIRT1 level was negatively correlated with the pain score in patients with chronic pain. These findings revealed the mechanism of the difference in pain vulnerability between adult and juvenile rodents and provided evidence for age-specific treatment of chronic pain.


Subject(s)
Rodentia , Sirtuin 1 , Animals , Ganglia, Spinal , Humans , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells , Sirtuin 1/genetics
13.
Pain ; 162(2): 490-502, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32868747

ABSTRACT

ABSTRACT: Mechanical allodynia is a debilitating condition for millions of patients with chronic pain. Mechanical allodynia can manifest in distinct forms, including brush-evoked dynamic and filament-evoked static allodynia. In the nervous system, the forkhead protein Foxo1 plays a critical role in neuronal structures and functions. However, the role of Foxo1 in the somatosensory signal remains unclear. Here, we found that Foxo1 selectively regulated static mechanical pain. Foxo1 knockdown decreased sensitivity to static mechanical stimuli in normal rats and attenuated static mechanical allodynia in rat models for neuropathic, inflammatory, and chemotherapy pain. Conversely, Foxo1 overexpression selectively enhanced sensitivity to static mechanical stimuli and provoked static mechanical allodynia. Furthermore, Foxo1 interacted with voltage-gated sodium Nav1.7 channels and increased the Nav1.7 current density by accelerating activation rather than by changing the expression of Nav1.7 in dorsal root ganglia neurons. In addition, the serum level of Foxo1 was found to be increased in chronic pain patients and to be positively correlated with the severity of chronic pain. Altogether, our findings suggest that serum Foxo1 level could be used as a biological marker for prediction and diagnosis of chronic pain. Moreover, selective blockade of Foxo1/Nav1.7 interaction may offer a new therapeutic approach in patients with mechanical pain.


Subject(s)
Pain , Voltage-Gated Sodium Channels , Animals , Forkhead Box Protein O1/genetics , Ganglia, Spinal/metabolism , Humans , Hyperalgesia , Nerve Tissue Proteins/metabolism , Rats , Rats, Sprague-Dawley
14.
Mol Pharm ; 17(12): 4603-4615, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33175556

ABSTRACT

Cancer nanovaccines have been widely explored to enhance immunotherapy efficiency, in which the significant irritation of antigen-specific cytotoxic T cells (CTLs) is the critical point. In this study, we developed a pH and reduction dual-sensitive nanovaccine (PMSN@OVA-MPN) composed of two parts. The inner part was made up of polyethyleneimine (PEI)-modified mesoporous silica nanoparticles (MSNs) loaded with model antigen ovalbumin (OVA) and the outer part was made up of disulfide bond-involved metal-phenolic networks (MPNs) as a protective corona. In vitro release experiments proved that PMSN@OVA-MPN could intelligently release OVA in the presence of reductive glutathione, but not in neutral phosphate-buffered saline (PBS). Moreover, in vitro cell assays indicated that the nanovaccine promoted not only the OVA uptake efficiency by DC2.4 cells but also antigen lysosome escape due to the proton sponge effect of PEI. Furthermore, in vivo animal experiments indicated that PMSN@OVA-MPN induced a large tumor-specific cellular immune response so as to effectively inhibit the growth of an existing tumor. Finally, the immune memory effect caused by the nanovaccine afforded conspicuous prophylaxis efficacy in neonatal tumors. Hence, the multifunctional vaccine delivery system prepared in this work exhibits a great application potential in cancer immunotherapy and offers a platform for the development of nanovaccines.


Subject(s)
Cancer Vaccines/administration & dosage , Drug Carriers/chemistry , Immunotherapy, Active/methods , Nanospheres/chemistry , Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cancer Vaccines/pharmacokinetics , Cell Line, Tumor , Dendritic Cells/immunology , Disease Models, Animal , Drug Compounding/methods , Drug Liberation , Female , Humans , Hydrogen-Ion Concentration , Immunogenicity, Vaccine , Immunologic Memory , Metal-Organic Frameworks/chemistry , Mice , Neoplasms/immunology , Polyethyleneimine/chemistry , Silicon Dioxide/chemistry
15.
Nanoscale Res Lett ; 15(1): 69, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32232586

ABSTRACT

Yolk-shell-structured calcium phosphate microspheres have a great potential for medical applications due to their excellent physicochemical properties and biocompatibility. However, developing a yolk-shell-structured calcium phosphate with high adsorption capability remains a challenge. Herein, a porous yolk-shell-structured microsphere (ATP-CG) of calcium phosphate with high-specific surface area [SBET = 143 m2 g-1, which is approximately three times as high as that of ATP-CL microspheres synthesized by replacing calcium source with calcium L-lactate pentahydrate (CL)] was successfully synthesized by using adenosine 5'-triphosphate disodium salt (ATP) as the phosphorous source and calcium gluconate monohydrate (CG) as calcium source through a self-templating approache. The influences of molar ratio of Ca to P (Ca/P), hydrothermal temperature, and time on the morphology of ATP-CG microspheres were also investigated. It is found that the organic calcium source and organic phosphorous source play a vital role in the formation of yolk-shell structure. Furthermore, a batch of adsorption experiments were investigated to illuminate the adsorption mechanism of two kinds of yolk-shell-structured microspheres synthesized with different calcium sources. The results show that the adsorption capacity of ATP-CG microspheres (332 ± 36 mg/g) is about twice higher than that of ATP-CL microspheres (176 ± 33 mg/g). Moreover, the higher-specific surface area caused by the calcium source and unique surface chemical properties for ATP-CG microspheres play an important role in the improvement of HEL adsorption capability. The study indicates that the as-prepared yolk-shell-structured microsphere is promising for application in drug delivery fields and provides an effective approach for improving drug adsorption capability.

16.
J Sci Food Agric ; 99(15): 6822-6832, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31385307

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme (ACE) inhibitory peptides were found to alleviate acute hepatitis significantly. In this study, we purified and identified ACE inhibitory peptide from cashew to evaluate its protective role on alcohol-induced acute hepatitis in mice. RESULTS: The ACE inhibitory peptides were purified by using consecutive chromatographic techniques. One of these peptides (FETISFK) exhibited the highest ACE inhibition rate (91.04 ± 0.31%). In vivo, the results showed that ACE inhibitory peptide decreased levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) caused by alcohol exposure. Moreover, it could increase the activities of superoxide dismutase (SOD) and glutathione (GSH), and decrease the level of malondialdehyde (MDA). It was also found to down-regulate markedly the expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). It could also decrease the expression of ACE, angiotensin II (AngII) and angiotensin II type 1 receptor (AT1 R). CONCLUSION: These findings support the view that the ACE inhibitory peptide alleviated acute hepatitis by down-regulating the ACE-AngII-AT1 R axis, broadening the research approach to prevent acute hepatitis, and providing experimental data for the development and utilization of cashews. © 2019 Society of Chemical Industry.


Subject(s)
Anacardium/chemistry , Angiotensin-Converting Enzyme Inhibitors/chemistry , Hepatitis/drug therapy , Peptides/chemistry , Plant Extracts/chemistry , Acute Disease/therapy , Alcohols/adverse effects , Angiotensin II/genetics , Angiotensin II/metabolism , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Animals , Aspartate Aminotransferases/genetics , Aspartate Aminotransferases/metabolism , Hepatitis/enzymology , Hepatitis/etiology , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Nuts/chemistry , Peptides/administration & dosage , Peptides/isolation & purification , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
17.
Front Pharmacol ; 9: 1510, 2018.
Article in English | MEDLINE | ID: mdl-30666203

ABSTRACT

Currently there is no effective treatment available for clinical patients suffering from neuropathic pain induced by chemotherapy paclitaxel. Puerarin is a major isoflavonoid extracted from the Chinese medical herb kudzu root, which has been used for treatment of cardiovascular disorders and brain injury. Here, we found that puerarin dose-dependently alleviated paclitaxel-induced neuropathic pain. At the same time, puerarin preferentially reduced the excitability and blocked the voltage-gated sodium (Nav) channels of dorsal root ganglion (DRG) neurons from paclitaxel-induced neuropathic pain rats. Furthermore, puerarin was a more potent blocker of tetrodotoxin-resistant (TTX-R) Nav channels than of tetrodotoxin-sensitive (TTX-S) Nav channels in chronic pain rats' DRG neurons. In addition, puerarin had a stronger blocking effect on Nav1.8 channels in DRG neurons of neuropathic pain rats and ß1 subunit siRNA can abolish this selective blocking effect on Nav1.8. Together, these results suggested that puerarin may preferentially block ß1 subunit of Nav1.8 in sensory neurons contributed to its anti-paclitaxel induced neuropathic pain effect.

18.
Environ Toxicol Pharmacol ; 53: 191-198, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28654831

ABSTRACT

This study investigated the function of κ-carrageenan polysaccharide in immune regulation. The immune response of RAW 264.7 cells treated with κ-carrageenan polysaccharide was explored by MTT assay, general morphological observation, neutral red phagocytosis assay, Griess method, fluorescence method, and enzyme-linked immunosorbent assay. In addition, TLR4 blocking experiment and double-fluorescence immunostaining were performed on cells to demonstrate their immune response mechanism. Results show that κ-carrageenan polysaccharide not only promotes cell proliferation but also activates RAW 264.7 cells, thereby improving the cells' phagocytic capability, NO production, and tumor necrosis factor-α (TNF-α) secretion. In addition, the use of TLR4-specific inhibitors can significantly mediate the increased TNF-α secretion induced by κ-carrageenan polysaccharide. The RAW 264.7 cells treated with κ-carrageenan polysaccharide show upregulated TLR4 expression, and the main subunit of NF-κB (p65) is translocated. These results support the immunomodulatory function of κ-carrageenan polysaccharide in RAW 264.7 cells.


Subject(s)
Carrageenan/pharmacology , Macrophages/drug effects , Monocytes/drug effects , Active Transport, Cell Nucleus/drug effects , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Macrophages/metabolism , Mice , Monocytes/metabolism , Nitric Oxide/metabolism , Phagocytosis/drug effects , RAW 264.7 Cells , Sulfonamides/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/metabolism , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
J Oleo Sci ; 64(12): 1273-81, 2015.
Article in English | MEDLINE | ID: mdl-26582156

ABSTRACT

The present study attempts to investigate the anti-inflammatory potential of the isolated lipid extracts of three-spot seahorse which is rare marine bony fish. Petroleum ether (PE) extract was obtained from systematic solvent extraction after reflux extraction with 95% ethanol. FrIV was collected after silica gel column chromatography, and neutral lipids (NL), glycolipids (GL), phospholipids (PL) were separated from FrIV. Basic compositions were detected and analyzed via thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). Anti-inflammatory activities of total lipids (TL), isolated NL, GL, and PL were detected by secretion of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) in murine monocyte macrophage RAW264.7 cells in vitro. The results revealed that lipids of seahorse showed a positive correlation with the in vitro suppression of the release of nitric oxide (NO), interleukin (IL)-6, IL-1ß and tumor necrosis factor (TNF)-α potently in a dose dependent manner, and showed cell compatibility. Among the fractions, GL (50 µg/mL) showed the highest capacity to attenuate the generation of pro-inflammatory cytokines which was comparable to that of the positive drug dexamethasone (DX) (20 µg/mL). Collectively, our findings indicated that the lipids from seahorse may be effective in the management of inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Inflammation Mediators/metabolism , Lipids/isolation & purification , Lipids/pharmacology , Smegmamorpha/metabolism , Animals , Dexamethasone/pharmacology , Dose-Response Relationship, Drug , Glycolipids/isolation & purification , Glycolipids/pharmacology , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Liquid-Liquid Extraction/methods , Mice , Nitric Oxide/metabolism , Phospholipids/isolation & purification , Phospholipids/pharmacology , RAW 264.7 Cells , Tissue Extracts/isolation & purification , Tissue Extracts/pharmacology , Tumor Necrosis Factor-alpha/metabolism
20.
J Oleo Sci ; 64(9): 933-42, 2015.
Article in English | MEDLINE | ID: mdl-26250427

ABSTRACT

Three-Spot seahorse is a traditional medicine in Asian countries. However, the alcohol extract is largely unknown for its anti-inflammatory activity. This study aimed at elucidating fraction of potent anti-inflammatory activity of seahorse. A systematic solvent extraction method of liquid-liquid fractionation of ethanol crude extract gave four fractions petroleum ether (PE), and ethyl acetate (EtOAc), water saturated butanol (n-BuOH), water (H2O). In this study, PE extract was selected for further study after preliminary screening test, and was connected to silica column chromatography and eluted with different polarity of mobile phases, and obtained four active fractions (Fr I, Fr II, Fr III, Fr IV). Effect of separated fractions on inflammation was investigated in lipopolysaccharide (LPS) stimulated murine RAW264.7 cells in vitro. The result shows that seahorse extract was capable of inhibiting the production of nitric oxide (NO) significantly in a dose dependent manner and exhibited no notable cytotoxicity on cell viability. IC50 of fraction IV was 36.31 µg/mL, indicating that separated fraction possessed potent NO inhibitory activity against LPS-induced inflammatory response, thus, demonstrated its in vitro anti-inflammatory potentiality, it may be at least partially explained by the presence of anti-inflammation active substances, phenolic compounds, phospholipids and polyunsaturated fatty acids, especially phospholipids and polyunsaturated fatty acids. It could be suggested that seahorse lipid-soluble components could be used in functional food and anti-inflammatory drug preparations.


Subject(s)
Cytokines/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/adverse effects , Macrophages/metabolism , Nitric Oxide/metabolism , Smegmamorpha , Tissue Extracts/pharmacology , Alkanes , Animals , Anti-Inflammatory Agents , Dose-Response Relationship, Drug , Fatty Acids, Unsaturated/analysis , Mice , Phospholipids/analysis , RAW 264.7 Cells , Tissue Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...