Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Neuroimage ; 292: 120601, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38588832

ABSTRACT

PURPOSE: Intravoxel incoherent motion (IVIM) is a quantitative magnetic resonance imaging (MRI) method used to quantify perfusion properties of tissue non-invasively without contrast. However, clinical applications are limited by unreliable parameter estimates, particularly for the perfusion fraction (f) and pseudodiffusion coefficient (D*). This study aims to develop a high-fidelity reconstruction for reliable estimation of IVIM parameters. The proposed method is versatile and amenable to various acquisition schemes and fitting methods. METHODS: To address current challenges with IVIM, we adapted several advanced reconstruction techniques. We used a low-rank approximation of IVIM images and temporal subspace modeling to constrain the magnetization dynamics of the bi-exponential diffusion signal decay. In addition, motion-induced phase variations were corrected between diffusion directions and b-values, facilitating the use of high SNR real-valued diffusion data. The proposed method was evaluated in simulations and in vivo brain acquisitions in six healthy subjects and six individuals with a history of SARS-CoV-2 infection and compared with the conventionally reconstructed magnitude data. Following reconstruction, IVIM parameters were estimated voxel-wise. RESULTS: Our proposed method reduced noise contamination in simulations, resulting in a 60%, 58.9%, and 83.9% reduction in the NRMSE for D, f, and D*, respectively, compared to the conventional reconstruction. In vivo, anisotropic properties of D, f, and D* were preserved with the proposed method, highlighting microvascular differences in gray matter between individuals with a history of COVID-19 and those without (p = 0.0210), which wasn't observed with the conventional reconstruction. CONCLUSION: The proposed method yielded a more reliable estimation of IVIM parameters with less noise than the conventional reconstruction. Further, the proposed method preserved anisotropic properties of IVIM parameter estimates and demonstrated differences in microvascular perfusion in COVID-affected subjects, which weren't observed with conventional reconstruction methods.


Subject(s)
COVID-19 , Image Processing, Computer-Assisted , Humans , COVID-19/diagnostic imaging , Image Processing, Computer-Assisted/methods , Adult , Brain/diagnostic imaging , Motion , Female , Male , SARS-CoV-2 , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods
2.
Magn Reson Med ; 92(2): 573-585, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38501914

ABSTRACT

PURPOSE: To evaluate the use of pre-excitation gradients for eddy current-nulled convex optimized diffusion encoding (Pre-ENCODE) to mitigate eddy current-induced image distortions in diffusion-weighted MRI (DWI). METHODS: DWI sequences using monopolar (MONO), ENCODE, and Pre-ENCODE were evaluated in terms of the minimum achievable echo time (TE min $$ {}_{\mathrm{min}} $$ ) and eddy current-induced image distortions using simulations, phantom experiments, and in vivo DWI in volunteers ( N = 6 $$ N=6 $$ ). RESULTS: Pre-ENCODE provided a shorter TE min $$ {}_{\mathrm{min}} $$ than MONO (71.0 ± $$ \pm $$ 17.7ms vs. 77.6 ± $$ \pm $$ 22.9ms) and ENCODE (71.0 ± $$ \pm $$ 17.7ms vs. 86.2 ± $$ \pm $$ 14.2ms) in 100 % $$ \% $$ of the simulated cases for a commercial 3T MRI system with b-values ranging from 500 to 3000 s/mm 2 $$ {}^2 $$ and in-plane spatial resolutions ranging from 1.0 to 3.0mm 2 $$ {}^2 $$ . Image distortion was estimated by intravoxel signal variance between diffusion encoding directions near the phantom edges and was significantly lower with Pre-ENCODE than with MONO (10.1 % $$ \% $$ vs. 22.7 % $$ \% $$ , p = 6 - 5 $$ p={6}^{-5} $$ ) and comparable to ENCODE (10.1 % $$ \% $$ vs. 10.4 % $$ \% $$ , p = 0 . 12 $$ p=0.12 $$ ). In vivo measurements of apparent diffusion coefficients were similar in global brain pixels (0.37 [0.28,1.45] × 1 0 - 3 $$ \times 1{0}^{-3} $$ mm 2 $$ {}^2 $$ /s vs. 0.38 [0.28,1.45] × 1 0 - 3 $$ \times 1{0}^{-3} $$ mm 2 $$ {}^2 $$ /s, p = 0 . 25 $$ p=0.25 $$ ) and increased in edge brain pixels (0.80 [0.17,1.49] × 1 0 - 3 $$ \times 1{0}^{-3} $$ mm 2 $$ {}^2 $$ /s vs. 0.70 [0.18,1.48] × 1 0 - 3 $$ \times 1{0}^{-3} $$ mm 2 $$ {}^2 $$ /s, p = 0 . 02 $$ p=0.02 $$ ) for MONO compared to Pre-ENCODE. CONCLUSION: Pre-ENCODE mitigated eddy current-induced image distortions for diffusion imaging with a shorter TE min $$ {}_{\mathrm{min}} $$ than MONO and ENCODE.


Subject(s)
Algorithms , Brain , Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted , Phantoms, Imaging , Humans , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Computer Simulation , Artifacts , Adult , Healthy Volunteers
3.
Magn Reson Med ; 91(5): 2028-2043, 2024 May.
Article in English | MEDLINE | ID: mdl-38173304

ABSTRACT

PURPOSE: To develop a framework that jointly estimates rigid motion and polarizing magnetic field (B0 ) perturbations ( δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ ) for brain MRI using a single navigator of a few milliseconds in duration, and to additionally allow for navigator acquisition at arbitrary timings within any type of sequence to obtain high-temporal resolution estimates. THEORY AND METHODS: Methods exist that match navigator data to a low-resolution single-contrast image (scout) to estimate either motion or δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . In this work, called QUEEN (QUantitatively Enhanced parameter Estimation from Navigators), we propose combined motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimation from a fast, tailored trajectory with arbitrary-contrast navigator data. To this end, the concept of a quantitative scout (Q-Scout) acquisition is proposed from which contrast-matched scout data is predicted for each navigator. Finally, navigator trajectories, contrast-matched scout, and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ are integrated into a motion-informed parallel-imaging framework. RESULTS: Simulations and in vivo experiments show the need to model δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ to obtain accurate motion parameters estimated in the presence of strong δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Simulations confirm that tailored navigator trajectories are needed to robustly estimate both motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Furthermore, experiments show that a contrast-matched scout is needed for parameter estimation from multicontrast navigator data. A retrospective, in vivo reconstruction experiment shows improved image quality when using the proposed Q-Scout and QUEEN estimation. CONCLUSIONS: We developed a framework to jointly estimate rigid motion parameters and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ from navigators. Combing a contrast-matched scout with the proposed trajectory allows for navigator deployment in almost any sequence and/or timing, which allows for higher temporal-resolution motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimates.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Retrospective Studies , Motion , Magnetic Resonance Imaging/methods , Neuroimaging , Artifacts , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging
4.
Magn Reson Med ; 91(3): 987-1001, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37936313

ABSTRACT

PURPOSE: This study aims to develop a high-efficiency and high-resolution 3D imaging approach for simultaneous mapping of multiple key tissue parameters for routine brain imaging, including T1 , T2 , proton density (PD), ADC, and fractional anisotropy (FA). The proposed method is intended for pushing routine clinical brain imaging from weighted imaging to quantitative imaging and can also be particularly useful for diffusion-relaxometry studies, which typically suffer from lengthy acquisition time. METHODS: To address challenges associated with diffusion weighting, such as shot-to-shot phase variation and low SNR, we integrated several innovative data acquisition and reconstruction techniques. Specifically, we used M1-compensated diffusion gradients, cardiac gating, and navigators to mitigate phase variations caused by cardiac motion. We also introduced a data-driven pre-pulse gradient to cancel out eddy currents induced by diffusion gradients. Additionally, to enhance image quality within a limited acquisition time, we proposed a data-sharing joint reconstruction approach coupled with a corresponding sequence design. RESULTS: The phantom and in vivo studies indicated that the T1 and T2 values measured by the proposed method are consistent with a conventional MR fingerprinting sequence and the diffusion results (including diffusivity, ADC, and FA) are consistent with the spin-echo EPI DWI sequence. CONCLUSION: The proposed method can achieve whole-brain T1 , T2 , diffusivity, ADC, and FA maps at 1-mm isotropic resolution within 10 min, providing a powerful tool for investigating the microstructural properties of brain tissue, with potential applications in clinical and research settings.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Mathematical Concepts
5.
Magn Reson Med ; 91(6): 2278-2293, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38156945

ABSTRACT

PURPOSE: This study aims to develop a high-resolution whole-brain multi-parametric quantitative MRI approach for simultaneous mapping of myelin-water fraction (MWF), T1, T2, and proton-density (PD), all within a clinically feasible scan time. METHODS: We developed 3D visualization of short transverse relaxation time component (ViSTa)-MRF, which combined ViSTa technique with MR fingerprinting (MRF), to achieve high-fidelity whole-brain MWF and T1/T2/PD mapping on a clinical 3T scanner. To achieve fast acquisition and memory-efficient reconstruction, the ViSTa-MRF sequence leverages an optimized 3D tiny-golden-angle-shuffling spiral-projection acquisition and joint spatial-temporal subspace reconstruction with optimized preconditioning algorithm. With the proposed ViSTa-MRF approach, high-fidelity direct MWF mapping was achieved without a need for multicompartment fitting that could introduce bias and/or noise from additional assumptions or priors. RESULTS: The in vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide fast multi-parametric mapping with high SNR and good quality. The in vivo results of 1 mm- and 0.66 mm-isotropic resolution datasets indicate that the MWF values measured by the proposed method are consistent with standard ViSTa results that are 30× slower with lower SNR. Furthermore, we applied the proposed method to enable 5-min whole-brain 1 mm-iso assessment of MWF and T1/T2/PD mappings for infant brain development and for post-mortem brain samples. CONCLUSIONS: In this work, we have developed a 3D ViSTa-MRF technique that enables the acquisition of whole-brain MWF, quantitative T1, T2, and PD maps at 1 and 0.66 mm isotropic resolution in 5 and 15 min, respectively. This advancement allows for quantitative investigations of myelination changes in the brain.


Subject(s)
Myelin Sheath , Water , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Mapping/methods , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
6.
Nat Methods ; 20(12): 2048-2057, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38012321

ABSTRACT

To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Head , Neuroimaging , Signal-To-Noise Ratio
7.
Neuroimage ; 275: 120168, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37187364

ABSTRACT

PURPOSE: To develop a high-fidelity diffusion MRI acquisition and reconstruction framework with reduced echo-train-length for less T2* image blurring compared to typical highly accelerated echo-planar imaging (EPI) acquisitions at sub-millimeter isotropic resolution. METHODS: We first proposed a circular-EPI trajectory with partial Fourier sampling on both the readout and phase-encoding directions to minimize the echo-train-length and echo time. We then utilized this trajectory in an interleaved two-shot EPI acquisition with reversed phase-encoding polarity, to aid in the correction of off-resonance-induced image distortions and provide complementary k-space coverage in the missing partial Fourier regions. Using model-based reconstruction with structured low-rank constraint and smooth phase prior, we corrected the shot-to-shot phase variations across the two shots and recover the missing k-space data. Finally, we combined the proposed acquisition/reconstruction framework with an SNR-efficient RF-encoded simultaneous multi-slab technique, termed gSlider, to achieve high-fidelity 720 µm and 500 µm isotropic resolution in-vivo diffusion MRI. RESULTS: Both simulation and in-vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide distortion-corrected diffusion imaging at the mesoscale with markedly reduced T2*-blurring. The in-vivo results of 720 µm and 500 µm datasets show high-fidelity diffusion images with reduced image blurring and echo time using the proposed approaches. CONCLUSIONS: The proposed method provides high-quality distortion-corrected diffusion-weighted images with ∼40% reduction in the echo-train-length and T2* blurring at 500µm-isotropic-resolution compared to standard multi-shot EPI.


Subject(s)
Brain , Echo-Planar Imaging , Humans , Echo-Planar Imaging/methods , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods , Computer Simulation
8.
bioRxiv ; 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37034586

ABSTRACT

Introduction: Spatio-temporal MRI methods enable whole-brain multi-parametric mapping at ultra-fast acquisition times through efficient k-space encoding, but can have very long reconstruction times, which limit their integration into clinical practice. Deep learning (DL) is a promising approach to accelerate reconstruction, but can be computationally intensive to train and deploy due to the large dimensionality of spatio-temporal MRI. DL methods also need large training data sets and can produce results that don't match the acquired data if data consistency is not enforced. The aim of this project is to reduce reconstruction time using DL whilst simultaneously limiting the risk of deep learning induced hallucinations, all with modest hardware requirements. Methods: Deep Learning Initialized Compressed Sensing (Deli-CS) is proposed to reduce the reconstruction time of iterative reconstructions by "kick-starting" the iterative reconstruction with a DL generated starting point. The proposed framework is applied to volumetric multi-axis spiral projection MRF that achieves whole-brain T1 and T2 mapping at 1-mm isotropic resolution for a 2-minute acquisition. First, the traditional reconstruction is optimized from over two hours to less than 40 minutes while using more than 90% less RAM and only 4.7 GB GPU memory, by using a memory-efficient GPU implementation. The Deli-CS framework is then implemented and evaluated against the above reconstruction. Results: Deli-CS achieves comparable reconstruction quality with 50% fewer iterations bringing the full reconstruction time to 20 minutes. Conclusion: Deli-CS reduces the reconstruction time of subspace reconstruction of volumetric spatio-temporal acquisitions by providing a warm start to the iterative reconstruction algorithm.

9.
Magn Reson Med ; 89(5): 1961-1974, 2023 05.
Article in English | MEDLINE | ID: mdl-36705076

ABSTRACT

PURPOSE: This work aims to develop a novel distortion-free 3D-EPI acquisition and image reconstruction technique for fast and robust, high-resolution, whole-brain imaging as well as quantitative T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. METHODS: 3D Blip-up and -down acquisition (3D-BUDA) sequence is designed for both single- and multi-echo 3D gradient recalled echo (GRE)-EPI imaging using multiple shots with blip-up and -down readouts to encode B0 field map information. Complementary k-space coverage is achieved using controlled aliasing in parallel imaging (CAIPI) sampling across the shots. For image reconstruction, an iterative hard-thresholding algorithm is employed to minimize the cost function that combines field map information informed parallel imaging with the structured low-rank constraint for multi-shot 3D-BUDA data. Extending 3D-BUDA to multi-echo imaging permits T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. For this, we propose constructing a joint Hankel matrix along both echo and shot dimensions to improve the reconstruction. RESULTS: Experimental results on in vivo multi-echo data demonstrate that, by performing joint reconstruction along with both echo and shot dimensions, reconstruction accuracy is improved compared to standard 3D-BUDA reconstruction. CAIPI sampling is further shown to enhance image quality. For T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping, parameter values from 3D-Joint-CAIPI-BUDA and reference multi-echo GRE are within limits of agreement as quantified by Bland-Altman analysis. CONCLUSIONS: The proposed technique enables rapid 3D distortion-free high-resolution imaging and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. Specifically, 3D-BUDA enables 1-mm isotropic whole-brain imaging in 22 s at 3T and 9 s on a 7T scanner. The combination of multi-echo 3D-BUDA with CAIPI acquisition and joint reconstruction enables distortion-free whole-brain T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping in 47 s at 1.1 × 1.1 × 1.0 mm3 resolution.


Subject(s)
Echo-Planar Imaging , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Echo-Planar Imaging/methods , Imaging, Three-Dimensional/methods , Brain/diagnostic imaging , Brain Mapping/methods , Algorithms
10.
Hum Brain Mapp ; 44(6): 2209-2223, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36629336

ABSTRACT

Quantitative assessment of brain myelination has gained attention for both research and diagnosis of neurological diseases. However, conventional pulse sequences cannot directly acquire the myelin-proton signals due to its extremely short T2 and T2* values. To obtain the myelin-proton signals, dedicated short T2 acquisition techniques, such as ultrashort echo time (UTE) imaging, have been introduced. However, it remains challenging to isolate the myelin-proton signals from tissues with longer T2. In this article, we extended our previous two-dimensional ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) with dual-echo acquisition to three dimensional (3D). Given a relatively low proton density (PD) of myelin-proton, we utilized Cramér-Rao Lower Bound to encode myelin-proton with the maximal SNR efficiency for optimizing the MR fingerprinting design, in order to improve the sensitivity of the sequence to myelin-proton. In addition, with a second echo of approximately 3 ms, myelin-water component can be also captured. A myelin-tissue (myelin-proton and myelin-water) fraction mapping can be thus calculated. The optimized 3D UTE-MRF with dual-echo acquisition is tested in simulations, physical phantom and in vivo studies of both healthy subjects and multiple sclerosis patients. The results suggest that the rapidly decayed myelin-proton and myelin-water signal can be depicted with UTE signals of our method at clinically relevant resolution (1.8 mm isotropic) in 15 min. With its good sensitivity to myelin loss in multiple sclerosis patients demonstrated, our method for the whole brain myelin-tissue fraction mapping in clinical friendly scan time has the potential for routine clinical imaging.


Subject(s)
Multiple Sclerosis , Myelin Sheath , Humans , Protons , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Water , Magnetic Resonance Spectroscopy , Imaging, Three-Dimensional/methods
11.
ArXiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38196746

ABSTRACT

Purpose: This study aims to develop a high-resolution whole-brain multi-parametric quantitative MRI approach for simultaneous mapping of myelin-water fraction (MWF), T1, T2, and proton-density (PD), all within a clinically feasible scan time. Methods: We developed 3D ViSTa-MRF, which combined Visualization of Short Transverse relaxation time component (ViSTa) technique with MR Fingerprinting (MRF), to achieve high-fidelity whole-brain MWF and T1/T2/PD mapping on a clinical 3T scanner. To achieve fast acquisition and memory-efficient reconstruction, the ViSTa-MRF sequence leverages an optimized 3D tiny-golden-angle-shuffling spiral-projection acquisition and joint spatial-temporal subspace reconstruction with optimized preconditioning algorithm. With the proposed ViSTa-MRF approach, high-fidelity direct MWF mapping was achieved without a need for multi-compartment fitting that could introduce bias and/or noise from additional assumptions or priors. Results: The in-vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide fast multi-parametric mapping with high SNR and good quality. The in-vivo results of 1mm- and 0.66mm-iso datasets indicate that the MWF values measured by the proposed method are consistent with standard ViSTa results that are 30x slower with lower SNR. Furthermore, we applied the proposed method to enable 5-minute whole-brain 1mm-iso assessment of MWF and T1/T2/PD mappings for infant brain development and for post-mortem brain samples. Conclusions: In this work, we have developed a 3D ViSTa-MRF technique that enables the acquisition of whole-brain MWF, quantitative T1, T2, and PD maps at 1mm and 0.66mm isotropic resolution in 5 and 15 minutes, respectively. This advancement allows for quantitative investigations of myelination changes in the brain.

12.
ArXiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168458

ABSTRACT

$B_1^+$ and $B_0$ field-inhomogeneities can significantly reduce accuracy and robustness of MRF's quantitative parameter estimates. Additional $B_1^+$ and $B_0$ calibration scans can mitigate this but add scan time and cannot be applied retrospectively to previously collected data. Here, we proposed a calibration-free sequence-adaptive deep-learning framework, to estimate and correct for $B_1^+$ and $B_0$ effects of any MRF sequence. We demonstrate its capability on arbitrary MRF sequences at 3T, where no training data were previously obtained. Such approach can be applied to any previously-acquired and future MRF-scans. The flexibility in directly applying this framework to other quantitative sequences is also highlighted.

13.
Magn Reson Med ; 88(2): 633-650, 2022 08.
Article in English | MEDLINE | ID: mdl-35436357

ABSTRACT

PURPOSE: To rapidly obtain high resolution T2 , T2 *, and quantitative susceptibility mapping (QSM) source separation maps with whole-brain coverage and high geometric fidelity. METHODS: We propose Blip Up-Down Acquisition for Spin And Gradient Echo imaging (BUDA-SAGE), an efficient EPI sequence for quantitative mapping. The acquisition includes multiple T2 *-, T2 '-, and T2 -weighted contrasts. We alternate the phase-encoding polarities across the interleaved shots in this multi-shot navigator-free acquisition. A field map estimated from interim reconstructions was incorporated into the joint multi-shot EPI reconstruction with a structured low rank constraint to eliminate distortion. A self-supervised neural network (NN), MR-Self2Self (MR-S2S), was used to perform denoising to boost SNR. Using Slider encoding allowed us to reach 1 mm isotropic resolution by performing super-resolution reconstruction on volumes acquired with 2 mm slice thickness. Quantitative T2 (=1/R2 ) and T2 * (=1/R2 *) maps were obtained using Bloch dictionary matching on the reconstructed echoes. QSM was estimated using nonlinear dipole inversion on the gradient echoes. Starting from the estimated R2 /R2 * maps, R2 ' information was derived and used in source separation QSM reconstruction, which provided additional para- and dia-magnetic susceptibility maps. RESULTS: In vivo results demonstrate the ability of BUDA-SAGE to provide whole-brain, distortion-free, high-resolution, multi-contrast images and quantitative T2 /T2 * maps, as well as yielding para- and dia-magnetic susceptibility maps. Estimated quantitative maps showed comparable values to conventional mapping methods in phantom and in vivo measurements. CONCLUSION: BUDA-SAGE acquisition with self-supervised denoising and Slider encoding enables rapid, distortion-free, whole-brain T2 /T2 * mapping at 1 mm isotropic resolution under 90 s.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping/methods , Image Processing, Computer-Assisted/methods , Magnetic Phenomena , Magnetic Resonance Imaging/methods , Phantoms, Imaging
14.
Magn Reson Med ; 88(1): 133-150, 2022 07.
Article in English | MEDLINE | ID: mdl-35199877

ABSTRACT

PURPOSE: To improve image quality and accelerate the acquisition of 3D MR fingerprinting (MRF). METHODS: Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low-rank constraint and a modified spiral-projection spatiotemporal encoding scheme called tiny golden-angle shuffling were implemented for rapid whole-brain high-resolution quantitative mapping. Reconstruction parameters such as the locally low-rank regularization parameter and the subspace rank were tuned using retrospective in vivo data and simulated examinations. B0 inhomogeneity correction using multifrequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect. RESULTS: The proposed MRF acquisition and reconstruction framework yields high-quality 1-mm isotropic whole-brain quantitative maps in 2 min at better quality compared with 6-min acquisitions of prior approaches. The proposed method was validated to not induce bias in T1 and T2 mapping. High-quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4 min using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures. CONCLUSIONS: The proposed tiny golden-angle shuffling, MRF with optimized spiral-projection trajectory and subspace reconstruction enables high-resolution quantitative mapping in ultrafast acquisition time.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Retrospective Studies
15.
Magn Reson Med ; 86(4): 2064-2075, 2021 10.
Article in English | MEDLINE | ID: mdl-34046924

ABSTRACT

PURPOSE: To rapidly obtain high isotropic-resolution T2 maps with whole-brain coverage and high geometric fidelity. METHODS: A T2 blip-up/down EPI acquisition with generalized slice-dithered enhanced resolution (T2 -BUDA-gSlider) is proposed. A RF-encoded multi-slab spin-echo (SE) EPI acquisition with multiple TEs was developed to obtain high SNR efficiency with reduced TR. This was combined with an interleaved 2-shot EPI acquisition using blip-up/down phase encoding. An estimated field map was incorporated into the joint multi-shot EPI reconstruction with a structured low rank constraint to achieve distortion-free and robust reconstruction for each slab without navigation. A Bloch simulated subspace model was integrated into gSlider reconstruction and used for T2 quantification. RESULTS: In vivo results demonstrated that the T2 values estimated by the proposed method were consistent with gold standard spin-echo acquisition. Compared to the reference 3D fast spin echo (FSE) images, distortion caused by off-resonance and eddy current effects were effectively mitigated. CONCLUSION: BUDA-gSlider SE-EPI acquisition and gSlider-subspace joint reconstruction enabled distortion-free whole-brain T2 mapping in 2 min at ~1 mm3 isotropic resolution, which could bring significant benefits to related clinical and neuroscience applications.


Subject(s)
Echo-Planar Imaging , Image Processing, Computer-Assisted , Brain/diagnostic imaging , Brain Mapping , Imaging, Three-Dimensional
16.
Magn Reson Med ; 86(2): 791-803, 2021 08.
Article in English | MEDLINE | ID: mdl-33748985

ABSTRACT

PURPOSE: We combine SNR-efficient acquisition and model-based reconstruction strategies with newly available hardware instrumentation to achieve distortion-free in vivo diffusion MRI of the brain at submillimeter-isotropic resolution with high fidelity and sensitivity on a clinical 3T scanner. METHODS: We propose blip-up/down acquisition (BUDA) for multishot EPI using interleaved blip-up/blip-down phase encoding and incorporate B0 forward-modeling into structured low-rank reconstruction to enable distortion-free and navigator-free diffusion MRI. We further combine BUDA-EPI with an SNR-efficient simultaneous multislab acquisition (generalized slice-dithered enhanced resolution ["gSlider"]), to achieve high-isotropic-resolution diffusion MRI. To validate gSlider BUDA-EPI, whole-brain diffusion data at 860-µm and 780-µm data sets were acquired. Finally, to improve the conditioning and minimize noise penalty in BUDA reconstruction at very high resolutions where B0 inhomogeneity can have a detrimental effect, the level of B0 inhomogeneity was reduced by incorporating slab-by-slab dynamic shimming with a 32-channel AC/DC coil into the acquisition. Whole-brain 600-µm diffusion data were then acquired with this combined approach of gSlider BUDA-EPI with dynamic shimming. RESULTS: The results of 860-µm and 780-µm datasets show high geometry fidelity with gSlider BUDA-EPI. With dynamic shimming, the BUDA reconstruction's noise penalty was further alleviated. This enables whole-brain 600-µm isotropic resolution diffusion imaging with high image quality. CONCLUSIONS: The gSlider BUDA-EPI method enables high-quality, distortion-free diffusion imaging across the whole brain at submillimeter resolution, where the use of multicoil dynamic B0 shimming further improves reconstruction performance, which can be particularly useful at very high resolutions.


Subject(s)
Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted , Brain/diagnostic imaging , Echo-Planar Imaging
17.
Ann Clin Transl Neurol ; 6(9): 1639-1646, 2019 09.
Article in English | MEDLINE | ID: mdl-31359636

ABSTRACT

OBJECTIVE: Mesial temporal lobe epilepsy (MTLE) is a network disorder. We aimed to quantify the white matter alterations in the temporal lobe of MTLE patients with hippocampal sclerosis (MTLE-HS) by using magnetic resonance fingerprinting (MRF), a novel imaging technique, which allows simultaneous measurements of multiple parameters with a single acquisition. METHODS: We consecutively recruited 27 unilateral MTLE-HS patients and 22 healthy controls. Measurements including T1, T2, and PD values in the temporopolar white matter and temporal stem were recorded and analyzed. RESULTS: We found increased T2 value in both sides, and increased T1 value in the ipsilateral temporopolar white matter of MTLE-HS patients, as compared with healthy controls. The T1 and T2 values were higher in the ipsilateral than the contralateral side. In the temporal stem, increased T1 and T2 values in the ipsilateral side of the MTLE-HS patients were also observed. Only increased T2 values were observed in the contralateral temporal stem. No significant differences in PD values were observed in either the temporopolar white matter or temporal stem of the MTLE-HS patients. Correlation analysis revealed that T1 and T2 values in the ipsilateral temporopolar white matter were negatively correlated with the age at epilepsy onset. INTERPRETATION: By using MRF, we were able to assess the alterations of T1 and T2 in the temporal lobe white matter of MTLE-HS patients. MRF could be a promising imaging technique in identifying mild changes in MTLE patients, which might optimize the pre-surgical evaluation and therapeutic interventions in these patients.


Subject(s)
Epilepsy, Temporal Lobe/diagnostic imaging , Magnetic Resonance Imaging/methods , Temporal Lobe/diagnostic imaging , White Matter/diagnostic imaging , Adolescent , Adult , Female , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Prospective Studies , Sclerosis/diagnostic imaging , Sclerosis/pathology , Temporal Lobe/pathology , White Matter/pathology , Young Adult
18.
Magn Reson Med ; 82(4): 1359-1372, 2019 10.
Article in English | MEDLINE | ID: mdl-31131911

ABSTRACT

PURPOSE: To demonstrate an ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) method that allows quantifying relaxation times for muscle and bone in the musculoskeletal system and generating bone enhanced images that mimic CT scans. METHODS: A fast imaging steady-state free precession MRF sequence with half pulse excitation and half projection readout was designed to sample fast T2 decay signals. Varying echo time (TE) of a sinusoidal pattern was applied to enhance sensitivity for tissues with short and ultrashort T2 values. The performance of UTE-MRF was evaluated via simulations, phantom, and in vivo experiments. RESULTS: A minimal TE of 0.05 ms was achieved. Simulations indicated the sinusoidal TE sampling increased T2 quantification accuracy in the cortical bone and tendon but had little impact on long T2 muscle quantifications. For the rubber phantom, the averaged relaxometries from UTE-MRF (T1 = 162 ms and T2 = 1.07 ms) compared well with the gold standard (T1 = 190 ms and T2∗ = 1.03 ms). For the long T2 agarose phantom, the linear regression slope between UTE-MRF and gold standard was 1.07 (R2 = 0.991) for T1 and 1.04 (R2 = 0.994) for T2 . In vivo experiments showed the detection of the cortical bone (averaged T2 = 1.0 ms) and Achilles tendon (averaged T2 = 15 ms). Scalp structures from the bone enhanced image show high similarity with CT. CONCLUSION: The UTE-MRF with sinusoidal TEs can simultaneously quantify T1 , T2 , proton density, and B0 in long, short, even ultrashort T2 musculoskeletal structures. Bone enhanced images can be achieved in the brain with UTE-MRF.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Computer Simulation , Cortical Bone/diagnostic imaging , Humans , Leg/diagnostic imaging , Phantoms, Imaging , Tendons/diagnostic imaging
19.
Chaos ; 29(4): 043104, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31042941

ABSTRACT

Emergence of self-organized behaviors in diverse living systems often depends on population density. In these systems, cell-cell communications are usually mediated by the surrounding environment. Collective behaviors (e.g., synchrony and dynamical quorum sensing) of such systems with stirred environment have been extensively studied, but the spatiotemporal dynamics of the oscillators coupled via a diffusive environment (without stirring) is rather understudied. We here perform a computational study on the selection and competition of wave patterns in arrays of spatially distributed oscillators immersed in a diffusive medium. We find that population density plays a crucial role in the selection of wave patterns: (i) for a single spiral in the system, its rotation either inward or outward could be controlled by population density, and (ii) for spiral and target waves coexisting initially in the system, wave competition happens and population density decides which type of wave will finally survive. The latter phenomenon is further confirmed in a system whose individual element is excitable rather than self-sustained oscillatory. The mechanism underlying all these observations is attributed to the frequency competition. Our results in the excitable case may have implications on the experimental results.

20.
Magn Reson Med ; 82(1): 289-301, 2019 07.
Article in English | MEDLINE | ID: mdl-30883867

ABSTRACT

PURPOSE: To develop a fast, sub-millimeter 3D magnetic resonance fingerprinting (MRF) technique for whole-brain quantitative scans. METHODS: An acquisition trajectory based on multi-axis spiral projection imaging (maSPI) was implemented for 3D MRF with steady-state precession and slab excitation. By appropriately assigning the in-plane and through-plane rotations of spiral interleaves in a novel acquisition scheme, an maSPI-based acquisition was implemented, and the total acquisition time was reduced by up to a factor of 8 compared to stack-of-spiral (SOS)-based acquisition. A sliding-window method was also used to further reduce the required number of time points for a faster acquisition. The experiments were conducted both on a phantom and in vivo. RESULTS: The results from the phantom measurements with the proposed and gold standard methods were consistent with a good linear correlation and an R2 value approaching 0.99. The in vivo experiments achieved whole-brain parametric maps with isotropic resolutions of 1 mm and 0.8 mm in 5.0 and 6.0 min, respectively, with potential for further acceleration. An in vivo experiment with intentionally moving subjects demonstrated that the maSPI scheme largely outperforms the SOS scheme in terms of robustness to head motion. CONCLUSION: 3D MRF with an maSPI acquisition scheme enables fast and robust scans for high-resolution parametric mapping.


Subject(s)
Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Humans , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...