Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Talanta ; 276: 126250, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38743969

ABSTRACT

In this research, self-screening aptamer and MOFs-derived nanomaterial have been combined to construct electrochemical aptasensor for environmental detection. By utilizing the large specific surface area of reduced graphene oxide (rGO), ZIF-8 was grown in situ on surface of rGO, and the composites was pyrolyzed to obtain MOFs-derived porous carbon materials (rGO-NCZIF). Thanks to the synergistic effect between rGO and NCZIF, the complex exhibits remarkable characteristics, including a high electron transfer rate and electrocatalytic activity. In addition, the orderly arrangement of imidazole ligands within ZIF-8 facilitated the uniform doping of nitrogen elements into the porous carbon, thereby significantly enhancing its electrochemical performance. After carboxylation, rGO-NCZIF was functionalized with self-screening aptamer for fabricating electrochemical aptasensor, which can be used to detect Erwinia cypripedii, a kind of quarantine plant bacteria, with detection limit of 4.92 × 103 cfu/mL. Due to the simplicity and speed, the aptasensor is suitable for rapid customs inspection and quarantine. Additionally, the universality of this sensing strategy was verified through exosomes detection by changing the aptamer. The results indicated that the rGO-NCZIF-based electrochemical aptasensor had practical value in the environmental and medical fields.

2.
Anal Chim Acta ; 1278: 341688, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37709441

ABSTRACT

In this work, a wearable and flexible three-electrode electrochemical sensing system (TESS) by using a two-in-one enzyme-mimic working electrode (TIOWE) is reported. The integrated three-electrode, including working electrodes, reference electrodes, and counter electrodes are formed by transfer printing of Ni2P-based composite electrode ink (Ni2P/G ink), Ag/AgCl ink, and carbon ink onto PDMS substrate, respectively. The Ni2P/G ink-based working electrodes have both good conductivity and enzyme-mimic catalytic activity towards glucose. Under optimized conditions, the TIOWE-TESS has a low detection limit of 0.37 µM and wide linear ranges of 0.001 mM-0.1 mM and 0.1 mM-1.4 mM. Furthermore, the TIOWE-TESS has good applicability in serum samples and reveals remarkable electrochemical performance at fluctuant working temperatures. The proposed TIOWE-TESS can be integrated on a waterproof bandage to fabricate a skin-friendly patch device for sweet glucose monitoring, which highlights its potential applications in flexible and wearable commercial devices for health-monitoring.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Candy , Electrodes , Glucose
3.
Microvasc Res ; 148: 104544, 2023 07.
Article in English | MEDLINE | ID: mdl-37127063

ABSTRACT

Alleviating vascular barrier injury improves colitis. Angiotensin converting enzyme 2/angiotensin 1-7/Mas receptor (ACE2/Ang1-7/MasR) axis-related drugs have various biological properties, such as inhibition of inflammation and fibrosis, but their role in improving the gut-vascular barrier (GVB) has rarely been reported. This study aims to investigate the effects of diminazene aceturate (DIZE), an ACE2 activator, on vascular barrier damage in colitis. Mice were randomly divided into three groups: control, dextran sulfate sodium salt (DSS), and DIZE+DSS. Mice in the DSS group drank DSS for 8 days starting on day 4. Mice in the DIZE+DSS group were pregavaged with DIZE for 3 days and then drank DSS for 8 days while continuing to be gavaged with DIZE for 4 days. Mice were euthanized and samples were collected on the last day. Injury to colonic structure and colonic microvasculature was assessed by visual observation and appropriate staining. DSS-induced colonic and microvascular pathological damage in mice was substantially reversed by DIZE treatment. Molecular pathways were investigated by Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme linked immunosorbent assay (ELISA). DSS treatment upregulated angiotensin converting enzyme (ACE), angiotensin type 1 receptor (AT1R) protein, pro-inflammatory cytokines and inhibited tight junction-related protein expression. DIZE treatment activated ACE2/MasR protein expression and reversed epithelial barrier damage and inflammatory infiltration during DSS injury. In addition, DIZE treatment inhibited vascular endothelial growth factor A/vascular endothelial growth factor receptor 2/proto-oncogene tyrosine-protein kinase Src (VEGFA/VEGFR2/Src) pathway activation and restored vascular adhesion-linker protein vascular endothelial cadherin (VE-cadherin) expression during DSS injury. In conclusion, DIZE treatment ameliorated colitis, which was associated with balancing the two axes of the renin-angiotensin system (RAS) and repairing the GVB injury.


Subject(s)
Angiotensin-Converting Enzyme 2 , Colitis , Animals , Mice , Angiotensin-Converting Enzyme 2/metabolism , Renin-Angiotensin System/physiology , Vascular Endothelial Growth Factor A/metabolism
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122815, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37196549

ABSTRACT

Carbonized polymer dots (CPDs) have highly potential application value in the field of optoelectronic devices due to their preferable stability, excellent optical properties and low cost. Here, the nitrogen-doped carbonized polymer dots (HNCDs) with self-quenching-resistant fluorescence were prepared via a simple solvothermal method with citric acid, urea and 2-hydroxyethyl methacrylate (HEMA) as raw materials. The structure and optical properties of the HNCDs have been explored in detail by various contrast experiments. The results show that HEMA form the poly(HEMA) to modify on the surface of carbonized core, which can overcome the quenching effect of carbonized core. The nitrogen doping is crucial for the red shift emission of solid-state HNCDs. Furthermore, the HNCDs exhibit concentration-dependent emission and excellent compatibility with silicone sol, which lead to their emission red shifted from blue to red with increasing concentration. The HNCDs were further applied to construct the light-emitting diodes (LEDs), and the multicolor LEDs ranging from blue to red can be prepared by simply varying the type of chips and adjusting the concentration of HNCDs in encapsulating material.

5.
Ecotoxicol Environ Saf ; 244: 114034, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36063615

ABSTRACT

2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) is one of the most important polybrominated diphenyl ethers (PBDEs) congeners, and epidemiological studies have shown that it can cause adverse pregnancy outcomes. The aim of our study was to investigate the role of placental injury in BDE-47-induced adverse pregnancy outcomes through in vivo and in vitro models. From day 0.5 to day 16.5 of pregnancy of ICR mice, BDE-47 oral doses of 0, 25, 50 and 100 mg/kg/day were administered. Immunohistochemical staining found that BDE-47 inhibited the expression of CD34 in mouse placenta, and ELISA results showed that BDE-47 reduced the levels of VEGF and PlGF in the serum of pregnant mice. Western blot assays found that the expression levels of VEGF-A and invasion-related factors were decreased in the placentas of BDE-47-treated group, which indicated that BDE-47 could impair placental angiogenesis. Furthermore, BDE-47 inhibited proliferation, increased apoptosis and autophagy, and activated p38 MAPK signaling pathway in mouse placental tissue. In vitro, HTR-8/SVneo cells were treated with 0, 5, 10, 20 µM BDE-47 for 24 h. Wound healing assays and Transwell assays showed that BDE-47 inhibited the migration and invasion ability of HTR-8/SVneo cells. We also found that BDE-47 inhibited the proliferation of HTR-8/SVneo cells and increased apoptosis and autophagy. BDE-47 activated p38 MAPK signaling pathway in HTR-8/SVneo cells, and inhibition of p38 MAPK signaling pathway in HTR-8/SVneo cells restored the effects caused by BDE-47. In conclusion, BDE-47 impairs placental angiogenesis by inhibiting cell migration and invasion, and induces placental toxicity by inhibiting proliferation, increasing apoptosis and autophagy. In vitro, activation of p38 MAPK signaling pathway is involved in the processes of placental injury by BDE-47.


Subject(s)
Halogenated Diphenyl Ethers , Placenta , Animals , Ether/metabolism , Ether/pharmacology , Female , Mice , Mice, Inbred ICR , Placenta/metabolism , Pregnancy , Signal Transduction , Trophoblasts , Vascular Endothelial Growth Factor A/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
6.
ACS Appl Mater Interfaces ; 14(36): 41447-41455, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36049055

ABSTRACT

Thermal management of flexible/stretchable electronics has been a crucial issue. Mass supernumerary thermal heat is created in the repetitive course of deformation because of the large nanocontact resistance between electric conductive fillers, as well as the interfacial resistance between fillers and the polymer matrix. Here, we report a stretchable thermoplastic polyurethane (TPU)-boron nitride nanosheet (BNNS) composite film with a high in-plane thermal conductivity based on an air/water interfacial (AWI) assembly method. In addition to rigid devices, it was capable for thermal management of flexible electronics. During more than 2000 cycles of the bending-releasing process, the average saturated surface temperature of the flexible conductor covered with composite film with 30 wt % BNNSs was approximately 40.8 ± 1 °C (10.5 °C lower than that with pure TPU). Moreover, the thermal dissipating property of the composite under stretching was measured. All the results prove that this TPU-BNNS composite film is a candidate for thermal management of next-generation flexible/stretchable electronics with high power density.

7.
Biosens Bioelectron ; 214: 114518, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35780541

ABSTRACT

A novel electrochemical biosensor was constructed to detect p53 gene based on MIL-101-NH2 (Cr) by combining target-responsive releasing and self-catalysis strategy. MIL-101-NH2 (Cr) with suitable pore structure was used to encapsulate methylene blue (MB) as signal probe. The hairpin DNA (HP) containing rich-G sequences was used as gatekeeper to seal up the pores and avoid MB leakage through covalent immobilization. The p53 gene could hybridize with the loop portion of HP for the formation of dsDNA, which had the specific nicking site of the nicking endonuclease (Nt.BstNBI). Then Nt.BstNBI recognized the specific recognition site and cleaved HP to open the pore for releasing of MB. Meanwhile, the cleavage of HP released the target DNA to trigger the target recycling for signal amplification. More importantly, the plentiful rich-G sequences were exposed to form Hemin/G-quadruplex DNAzymes, which could unite MIL-101-NH2 (Cr) to catalyze redox reaction of MB released by itself for signal amplification. The biosensor for p53 had wide linear range from 1 × 10-14 to 1 × 10-7 M and a low detection limit of 1.4 × 10-15 M. The combination of target-responsive releasing and self-catalysis strategy provided a promising way for constructing ultrasensitive and simple biosensor.


Subject(s)
Biosensing Techniques , Catalysis , DNA/genetics , Electrochemical Techniques , Limit of Detection , Metal-Organic Frameworks , Tumor Suppressor Protein p53/genetics
8.
Lab Anim (NY) ; 51(5): 133-145, 2022 05.
Article in English | MEDLINE | ID: mdl-35469022

ABSTRACT

Oxidative stress in spermatozoa is a major contributor to male subfertility, which makes it an informed choice to generate animal models of male subfertility with targeted modifications of the antioxidant systems. However, the critical male germ cell-specific antioxidant mechanisms have not been well defined yet. Here we identify LanCL1 as a major male germ cell-specific antioxidant gene, reduced expression of which is related to human male infertility. Mice deficient in LanCL1 display spermatozoal oxidative damage and impaired male fertility. Histopathological studies reveal that LanCL1-mediated antioxidant response is required for mouse testicular homeostasis, from the initiation of spermatogenesis to the maintenance of viability and functionality of male germ cells. Conversely, a mouse model expressing LanCL1 transgene is protected against high-fat-diet/obesity-induced oxidative damage and subfertility. We further show that germ cell-expressed LanCL1, in response to spermatogenic reactive oxygen species, is regulated by transcription factor specific protein 1 (SP1) during spermatogenesis. This study demonstrates a critical role for the SP1-LanCL1 axis in regulating testicular homeostasis and male fertility mediated by redox balance, and provides evidence that LanCL1 genetically modified mice have attractive applications as animal models of male subfertility.


Subject(s)
Antioxidants , Infertility, Male , Animals , Antioxidants/metabolism , Homeostasis/genetics , Humans , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Mice , Models, Animal , Oxidation-Reduction , Oxidative Stress/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism
9.
Vet Microbiol ; 268: 109398, 2022 May.
Article in English | MEDLINE | ID: mdl-35339816

ABSTRACT

Streptococcus uberis (S. uberis) is an environmentally important pathogenic bacterium and is the main pathogenic microorganism responsible for mastitis, which causes significant economic losses worldwide. Currently, there is no particularly effective treatment other than antibiotic therapy. Angiotensin-converting enzyme 2 (ACE2) plays an anti-inflammatory as well as an anti-injury role in numerous inflammatory diseases. Therefore, this study aimed to assess the hypothesis that S. uberis-induced mammary epithelial cells injury associated with ACE2, angiotensin II (Ang II) as well as angiotensin 1-7 (Ang-(1-7)) imbalance and that overexpression of ACE2 can repair S. uberis-induced mammary epithelial cells injury. We observed that the expression level of ACE2 was significantly downregulated after treatment of EpH4-Ev cells with S. uberis. Next, this assay verified the role of ACE2 in S. uberis-induced inflammatory injury in EpH4-Ev cells by overexpressing the ACE2 gene as well as its silencing. The results showed that overexpression of the ACE2 gene significantly activated the interleukin-10/signal transducer and activator of transcription 3/suppressors-of-cytokine-signaling 3 (IL-10/STAT3/SOCS3) pathway, thereby inhibiting the nuclear factor-κB (NF-κB) as well as pyroptosis pathways. Furthermore, overexpression of the ACE2 gene reversed the downregulation of zonula occludens 1 (ZO-1), Occludin, Claudin-1, and Claudin-2 caused by S. uberis, suggesting that ACE2 could promote to repair the blood-milk barrier. However, siRNA silencing of the ACE2 gene produced the opposite effect. These results suggest that ACE2 ameliorates S. uberis-induced mammary epithelial cells injury. AVAILABILITY OF DATA: All data generated or analyzed during this study are included within the article and its additional information file.


Subject(s)
Angiotensin-Converting Enzyme 2 , Mastitis , Angiotensin-Converting Enzyme 2/genetics , Animals , Epithelial Cells/microbiology , Female , Mammary Glands, Animal/microbiology , Mastitis/microbiology , Mastitis/veterinary , Streptococcus/genetics
10.
Food Chem ; 381: 132282, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35176684

ABSTRACT

An efficient colorimetric detection platform based on multi-enzyme cascade has been developed for detection of organophosphorus. Firstly, the dual-enzyme platform was prepared and applied for sensitive glucose detection (detection limit 0.32 µM). And then three enzymes, including acetylcholinesterase, horseradish peroxidase and choline oxidase were encapsulated in cruciate flower-like zeolitic imidazolate framework-8 (CF-ZIF-8) through one-step co-precipitation to construct detection platform with acetylcholine chloride as substrate. The acephate inhibited the activity of acetylcholinesterase, obstructed the cascade reaction and reduced the production of H2O2, resulting in the changes of color intensity for the colorimetric detection. With suitable size and porous structure, CF-ZIF-8 provided a good microenvironment for guaranteeing the activity and spatial proximity of enzymes. The multi-enzyme platform displayed great performances with the detection limit of 0.23 nM for acephate. It was applied to the detection of acephate in Chinese cabbage and romaine, verifying the practicability of this platform.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Acetylcholinesterase , Biosensing Techniques/methods , Colorimetry , Glucose , Hydrogen Peroxide/chemistry , Metal-Organic Frameworks/chemistry
11.
Anal Bioanal Chem ; 414(5): 1921-1932, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35001194

ABSTRACT

In this paper, novel synergetic PtNP@Co3O4 hollow nanopolyhedrals with peroxidase-like activities are designed and prepared, which can be used as electrochemical and colorimetric signal labels for the enzyme-free dual-channel homogeneous sensing of prostate-specific antigen. When prostate-specific antigens are present, the aptamer-modified PtNP@Co3O4 hollow nanopolyhedrals and magnetic beads form sandwich structures, which have excellent peroxidase-like activities, because of the synergetic effect of PtNP@Co3O4 hollow nanopolyhedrals. The sandwich structures can be separated from the mixture by the magnetic effect of the magnetic beads and catalyze the redox reactions between H2O2 and TMB, generating quantitative electrochemical and colorimetric responses in homogeneous solution simultaneously. Under the optimized conditions, the linear range of both electrochemical (0.01 to 10 ng/ml) and colorimetric (0.01-15 ng/ml) channels can satisfy the demand of prostate-specific antigen detection in clinic (4 ng/ml), and the electrochemical and colorimetric channels have a low detection limit of 0.0079 ng/ml and 0.01 ng/ml respectively without using natural enzymes. The strategy by using synergetic PtNP@Co3O4 hollow nanopolyhedrals as signal probes provides a promising scheme for developing simple, rapid, reliable, and ultrasensitive dual-channel homogeneous biosensors, which has a great potential as a powerful tool in prostate cancer diagnosis.


Subject(s)
Cobalt/chemistry , Metal Nanoparticles/chemistry , Oxides/chemistry , Platinum/chemistry , Prostate-Specific Antigen/analysis , Biosensing Techniques/methods , Colorimetry/methods , Electrochemical Techniques/methods , Limit of Detection , Reproducibility of Results
12.
Math Biosci Eng ; 19(12): 12212-12231, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36653993

ABSTRACT

HDFS heterogeneous clusters usually have multiple storage media at the same time. How to efficiently read and write file copies and reasonably use various storage media is a problem to be solved. Dynamically adjusting the number of copies is important in HDFS, which can solve the problem of accessing a large number of hot files at the same time and improve the efficiency of cluster services. A method is introduced to calculate the number of dynamic HDFS copies based on file access popularity in this paper. Firstly, an algorithm was proposed to predict file popularity based on the cuckoo search optimization Markov model. The unbiased grey model is used to predict the accessing file's popularity at the next moment according to the recent access of the file. The cuckoo search is used to optimize the Markov model, and the prediction error is corrected. Then, the calculation method of the number of copies is designed based on the prediction of the popularity of the file to be accessed and the availability of the node. The experiment shows that the proposed method has a high fitting degree with the actual value, and the MAPE is 3.08%, and it is the smallest, compared with several commonly used prediction models. In CloudSim4.0 simulation platform, multiple users write 10 files to the cluster at the same time, and the change number of copies is calculated according to the predicted value at the next moment, so as to improve the user access efficiency.


Subject(s)
Algorithms , Computer Simulation
13.
Anal Bioanal Chem ; 413(25): 6303-6312, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34396471

ABSTRACT

To improve the efficiency of aptasensors, a signal amplification strategy by coupling tyrosinase (Tyr)-triggered redox cycling with nanoscale porous carbon (NCZIF) has been proposed. The NCZIF was obtained by calcining ZIF-8 crystals in an inert atmosphere. It had high surface areas, great biocompatibility, and ease of functionalization, which was beneficial for immobilizing sufficient Tyr and aptamer covalently. When the target prostate-specific antigen (PSA) was present, the NCZIF functionalized with Tyr and an aptamer bound to the aptamer-modified Au electrode specifically through the sandwich structure. Then, Tyr acted to oxidize the electroinactive phenol, which led to low-background signal, in the substrate to electroactive catechol, and triggered the redox cycling under the action of NADH. The low detection limit of the proposed electrochemical aptasensor for PSA was 0.01 ng mL-1, and the wide detection range was from 0.01 to 50 ng mL-1. The use of ZIF-8 derived porous carbon and Tyr-triggered redox cycling system provided a promising solution for the development of simple, rapid, reliable, and low-background aptasensing methods, which had great potential in the field of disease diagnosis and biomedicine.


Subject(s)
Carbon/chemistry , Electrochemical Techniques , Metal-Organic Frameworks/chemistry , Prostate-Specific Antigen/chemistry , Catalysis , Electrodes , Enzymes , Enzymes, Immobilized , Nanostructures , Sensitivity and Specificity
14.
Biosens Bioelectron ; 166: 112448, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32862844

ABSTRACT

A simple homogeneous electrochemical aptasensor was designed by using target-responsive substrate releasing from aptamer-gated zeolitic imidazolate framework-8 (ZIF-8)-derived porous carbon nanocontainer. The nanocontainer (Z-700) was prepared by calcination of ZIF-8 at 700 °C. Z-700 had great biocompatibility, high surface areas and pore volume, especially the graphene-like π-rich structure, which was beneficial for adsorbing aptamer easily. The electroactive dyes methylene blue (MB) was then trapped in the pores of Z-700 and easily capped with aptamer as gatekeeper based on π-stacking interaction. Upon addition of target protein thrombin (Thb), the Thb could specifically recognize and combine with its aptamer to form complex. Thereafter, the aptamer bio-gate opened and the MB released from the pores, which could be detected on the screen-printed electrode. Under the optimized conditions, the proposed Thb aptasensor showed a wide detection range from 1 fM to 1 nM with a low detection limit of 0.57 fM. The strategy by using ZIF-8-derived porous carbon and aptamer bio-gate provides a promising scheme for developing simple, rapid, reliable and ultrasensitive bioassays, which has a great potential as a powerful tool in disease diagnosis and biomedicine.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Zeolites , Carbon , Electrochemical Techniques , Electrodes , Gold , Limit of Detection , Porosity
15.
Sens Actuators B Chem ; 3052020 Feb 15.
Article in English | MEDLINE | ID: mdl-32863588

ABSTRACT

Due to the lack of specific early detection methods for pancreatic cancer, it usually goes undetected until it is advanced. By employing paper-based electrodes (PPE), herein we for the first time developed a disposable low-cost paper-based immunosensor for rapid early quantitative detection of pancreatic cancer with a new biomarker, pseudopodium-enriched atypical kinase one, SGK269 (PEAK1). The immunosensor was constructed by fabricating PPEs immobilized with the versatile nanomaterial graphene oxide for the incorporation of antibodies to form an immunosensing platform, without the need of complicated surface modification. After it was confirmed that the PPEs exhibited excellent electrochemical properties, a sandwich-type electrochemical immunosensor was subsequently constructed by employing graphene oxide layers immobilized with anti-PEAK1, and the antibody conjugated with gold nanoparticles (AuNPs-tagged-Anti PEAK1). Further, spectral and surface characteristic studies confirmed the formation of the immunosensing platform. The immunosensor for PEAK1 exhibited a wide linear range between 10 pg mL-1 and 106 pg mL-1 with a low limit of detection (LOD) of 10 pg mL-1. The obtained results point towards rapid, sensitive, and specific early diagnosis of pancreatic cancer at the point of care and other low-resource settings.

16.
Biotechnol Biofuels ; 13: 147, 2020.
Article in English | MEDLINE | ID: mdl-32843896

ABSTRACT

BACKGROUND: Dunaliella salina can produce glycerol under salt stress, and this production can quickly adapt to changes in external salt concentration. Notably, glycerol is an ideal energy source. In recent years, it has been reported that the mitogen-activated protein kinase cascade pathway plays an important role in regulating salt stress, and in Dunaliella tertiolecta DtMAPK can regulate glycerol synthesis under salt stress. Therefore, it is highly important to study the relationship between the MAPK cascade pathway and salt stress in D. salina and modify it to increase the production of glycerol. RESULTS: In our study, we identified and analysed the alternative splicing of DsMEK1 (DsMEK1-X1, DsMEK1-X2) from the unicellular green alga D. salina. DsMEK1-X1 and DsMEK1-X2 were both localized in the cytoplasm. qRT-PCR assays showed that DsMEK1-X2 was induced by salt stress. Overexpression of DsMEK1-X2 revealed a higher increase rate of glycerol production compared to the control and DsMEK1-X1-oe under salt stress. Under salt stress, the expression of DsGPDH2/3/5/6 increased in DsMEK1-X2-oe strains compared to the control. This finding indicated that DsMEK1-X2 was involved in the regulation of DsGPDH expression and glycerol overexpression under salt stress. Overexpression of DsMEK1-X1 increased the proline content and reduced the MDA content under salt stress, and DsMEK1-X1 was able to regulate oxidative stress; thus, we hypothesized that DsMEK1-X1 could reduce oxidative damage under salt stress. Yeast two-hybrid analysis showed that DsMEK1-X2 could interact with DsMAPKKK1/2/3/9/10/17 and DsMAPK1; however, DsMEK1-X1 interacted with neither upstream MAPKKK nor downstream MAPK. DsMEK1-X2-oe transgenic lines increased the expression of DsMAPKKK1/3/10/17 and DsMAPK1, and DsMEK1-X2-RNAi lines decreased the expression of DsMAPKKK2/10/17. DsMEK1-X1-oe transgenic lines did not exhibit increased gene expression, except for DsMAPKKK9. CONCLUSION: Our findings demonstrate that DsMEK1-X1 and DsMEK1-X2 can respond to salt stress by two different pathways. The DsMEK1-X1 response to salt stress reduces oxidative damage; however, the DsMAPKKK1/2/3/9/10/17-DsMEK1-X2-DsMAPK1 cascade is involved in the regulation of DsGPDH expression and thus glycerol synthesis under salt stress.

17.
PLoS One ; 15(6): e0232549, 2020.
Article in English | MEDLINE | ID: mdl-32484808

ABSTRACT

Prodigiosin is an important secondary metabolite produced by Serratia marcescens. It can help strains resist stresses from other microorganisms and environmental factors to achieve self-preservation. Prodigiosin is also a promising secondary metabolite due to its pharmacological characteristics. However, pigmentless S. marcescens mutants always emerge after prolonged starvation, which might be a way for the bacteria to adapt to starvation conditions, but it could be a major problem in the industrial application of S. marcescens. To identify the molecular mechanisms of loss of prodigiosin production, two mutants were isolated after 16 days of prolonged incubation of wild-type (WT) S. marcescens 1912768R; one mutant (named 1912768WR) exhibited reduced production of prodigiosin, and a second mutant (named 1912768W) was totally defective. Comparative genomic analysis revealed that the two mutants had either mutations or deletions in rpoS. Knockout of rpoS in S. marcescens 1912768R had pleiotropic effects. Complementation of rpoS in the ΔrpoS mutant further confirmed that RpoS was a positive regulator of prodigiosin production and that its regulatory role in prodigiosin biosynthesis was opposite that in Serratia sp. ATCC 39006, which had a different type of pig cluster; further, rpoS from Serratia sp. ATCC 39006 and other strains complemented the prodigiosin defect of the ΔrpoS mutant, suggesting that the pig promoters are more important than the genes in the regulation of prodigiosin production. Deletion of rpoS strongly impaired the resistance of S. marcescens to stresses but increased membrane permeability for nutritional competence; competition assays in rich and minimum media showed that the ΔrpoS mutant outcompeted its isogenic WT strain. All these data support the idea that RpoS is pleiotropic and that the loss of prodigiosin biosynthesis in S. marcescens 1912768R during prolonged incubation is due to a mutation in rpoS, which appears to be a self-preservation and nutritional competence (SPANC) trade-off.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Enzymes/metabolism , Prodigiosin/biosynthesis , Serratia marcescens/physiology , Siderophores/biosynthesis , Sigma Factor/metabolism , Bacterial Proteins/genetics , Cell Membrane Permeability/physiology , Gene Expression Regulation , Gene Knockdown Techniques , Movement/physiology , Promoter Regions, Genetic , Sigma Factor/genetics , Stress, Physiological
18.
BMC Genomics ; 21(1): 29, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31914922

ABSTRACT

BACKGROUND: Anthocyanins are common substances with many agro-food industrial applications. However, anthocyanins are generally considered to be found only in natural plants. Our previous study isolated and purified the fungus Aspergillus sydowii H-1, which can produce purple pigments during fermentation. To understand the characteristics of this strain, a transcriptomic and metabolomic comparative analysis was performed with A. sydowii H-1 from the second and eighth days of fermentation, which confer different pigment production. RESULTS: We found five anthocyanins with remarkably different production in A. sydowii H-1 on the eighth day of fermentation compared to the second day of fermentation. LC-MS/MS combined with other characteristics of anthocyanins suggested that the purple pigment contained anthocyanins. A total of 28 transcripts related to the anthocyanin biosynthesis pathway was identified in A. sydowii H-1, and almost all of the identified genes displayed high correlations with the metabolome. Among them, the chalcone synthase gene (CHS) and cinnamate-4-hydroxylase gene (C4H) were only found using the de novo assembly method. Interestingly, the best hits of these two genes belonged to plant species. Finally, we also identified 530 lncRNAs in our datasets, and among them, three lncRNAs targeted the genes related to anthocyanin biosynthesis via cis-regulation, which provided clues for understanding the underlying mechanism of anthocyanin production in fungi. CONCLUSION: We first reported that anthocyanin can be produced in fungus, A. sydowii H-1. Totally, 31 candidate transcripts were identified involved in anthocyanin biosynthesis, in which CHS and C4H, known as the key genes in anthocyanin biosynthesis, were only found in strain H1, which indicated that these two genes may contribute to anthocyanins producing in H-1. This discovery expanded our knowledges of the biosynthesis of anthocyanins and provided a direction for the production of anthocyanin.


Subject(s)
Anthocyanins/metabolism , Aspergillus/genetics , Aspergillus/metabolism , Transcriptome/genetics , RNA, Long Noncoding/genetics
19.
Biosens Bioelectron ; 142: 111510, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31319327

ABSTRACT

Enzyme-mediated cascade reaction is applied to amplify signal and decrease the background because enzyme can catalyze inactive substrates into active substrates to generate the signal. In this work, Au nanoparticles, as signal probe, are used to load DNA probe and ALP for dual signal amplification. Based on enzyme-mediated cascade reaction, a homogeneous biosensor is constructed for bioassay by employing thrombin as target molecule. When the target is present in the solution, ALP catalyzes the PPi into Pi and then reacts with molybdate in conjunction with Pi in the DNA backbone to produce redox precipitates on the surface of the reduced graphene oxide modified electrode with the help of magnetic separation. Compared with the conventional heterogeneous biosensor, the immobilization-free strategy, proposed in this homogeneous biosensor, improves the sensitivity because of its lower steric hindrance. As a result, this biosensor displayed a great sensitivity with a wide linear range from 1 fM to 10 nM and a detection limit of 0.26 fM, providing a promise and easy operating method for various proteins detection.


Subject(s)
Biosensing Techniques/methods , DNA Probes/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Thrombin/analysis , Alkaline Phosphatase/chemistry , Electrochemical Techniques/methods , Graphite/chemistry , Humans , Limit of Detection , Metal Nanoparticles/ultrastructure , Molybdenum/chemistry , Oxidation-Reduction
20.
Gene ; 710: 161-169, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31153884

ABSTRACT

The glycerol-3-phosphate dehydrogenase (GPD) gene family plays a major role in glycerol synthesis and adaptation to abiotic stresses. Few studies on GPD family genes from the halotolerant algae Dunaliella salina are available. In this study, seven DsaGPD genes were identified by mining D. salina sequencing data. Among them, DsaGPD5 contained the canonical NAD+-GPD protein domain, called si-GPD. In comparison, DsaGPD1-4 not only contained the canonical NAD+-GPD domain but also a unique domain, the haloacid dehalogenase (HAD)-like superfamily domain, in their N-terminal region, called bi-GPD. DsaGPD6, 7 contained the FAD+-GPD domain. In the transient expression system, DsaGPD1, 3, 4 were found in the cytosol of Arabidopsis thaliana protoplast, DsaGPD2, 5 in the chloroplast, and DsaGPD6, 7 in the mitochondria. MEME analysis showed that six conserved motifs were present in both si-GPDs and bi-GPDs, whereas seven highly conserved motifs were only present in bi-GPDs. The quantitative real-time PCR results showed significant induction of the DsaGPD genes under abiotic stresses, indicating their tolerance-related role in D. salina. DsaGPD2 and DsaGPD5 may be the osmoregulator form and glyceride form in the chloroplast, respectively. The evolutionary forces acting on si-GPDs and bi-GPDs were different in the same organism: bi-GPDs were under purifying selection, while si-GPDs were mainly under positive selection. Furthermore, evolution of the N_HAD domain and C_GPD domain in bi-GPDs is highly correlated. In summary, this study characterizes DsaGPD gene family members and provides useful information for elucidating the salt tolerance mechanism in D. salina.


Subject(s)
Chlorophyceae/enzymology , Data Mining/methods , Glycerolphosphate Dehydrogenase/chemistry , Glycerolphosphate Dehydrogenase/genetics , Algal Proteins/chemistry , Algal Proteins/genetics , Amino Acid Motifs , Chlorophyceae/genetics , Chloroplasts/enzymology , Evolution, Molecular , Mitochondria/enzymology , Multigene Family , Phylogeny , Protein Domains , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...