Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 467: 133728, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38335619

ABSTRACT

Cities in Northeast China, e.g., Harbin, were brought to the forefront of air pollution control by a national-level policy promulgated in 2021, i.e., the Circular on Further Promoting the Pollution Prevention and Control Battle (the FP3CB Circular) which aimed at eliminating heavy or severe air pollution events. In this study, we explored the response of Harbin aerosol to the FP3CB Circular, based on observational results from two campaigns conducted during 2020-2021 and 2021-2022. A clear decreasing trend was identified for the impact of domestic biomass burning between the two winters, presumably driven by the clean heating actions. The 2021-2022 winter was also characterized by reduced formation of secondary organic aerosol but enhanced production of nitrate, which could be attributed to the less humid conditions but higher temperatures, respectively, compared to the 2020-2021 winter. The overall effect of these changes was a decrease in the contribution of organic species to wintertime aerosol in Harbin. In addition, the number of heavy or severe pollution days rebounded in the 2021-2022 winter compared to 2020-2021 (5 vs. 3), indicating that the emissions of primary particles and gaseous precursors must be further reduced to achieve the ambitious goals of the FP3CB Circular.

2.
Environ Pollut ; 335: 122362, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37567407

ABSTRACT

Fine particulate matter (PM2.5) in Northeast China was targeted by national-level clean air policy for the first time in 2022, with the release of Action Plan to eliminate heavy air pollution events. In this study, we investigated sources of PM2.5 during three successive winters in Harbin, a megacity in Northeast China, based on observational results from several recent campaigns in 2018-2021. During the 2020-2021 campaign, daytime and nighttime samples were collected in specific months in addition to 24-h integrated measurements, and the two sets of samples were combined in different ways to run a positive matrix factorization model. The source apportionment results suggested that the resolved secondary organic carbon (SOCPMF) had an uncertainty of ∼12%. Secondary aerosols were found to show the following features for the typical winters without agricultural fires. First, SOCPMF could be properly constrained by results from another widely-used approach for SOC estimation, the elemental carbon-tracer method. Second, secondary PM2.5 calculated using SOCPMF and secondary inorganic ions were generally in line with the independent estimations based on air quality data. Third, secondary components accounted for more than 50% of PM2.5 on average and contributed even more significantly during severe haze episodes, which were the focus of the latest Action Plan. This study also found that the wintertime PM2.5 decreased more slowly during 2017-2021 compared to 2013-2017, by ∼1 and 10 µg/m3 per year, respectively, for the metropolitan area where Harbin is located at. Our results highlighted the importance of secondary aerosols for further improving air quality in Northeast China, and for avoiding heavy pollution as required by the latest Action Plan.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Air Pollution/analysis , China , Seasons , Aerosols/analysis , Carbon/analysis
3.
Sci Total Environ ; 891: 164390, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37236463

ABSTRACT

Brown carbon (BrC) represents not only a major component of haze pollution but also a non-negligible contributor to positive radiative forcing, making it a key species for coordinating air quality and climate policies. In China, field observations on BrC remain limited given the highly variable emission sources and meteorological conditions across different regions. Here we focused on the optical properties of BrC in a distinct but rarely studied megacity in Northeast China, which is within a major agricultural region and experiences extremely cold winter. Agricultural fires were evident in April of 2021 and the fall of 2020, although open burning was strictly prohibited. Such emissions enhanced BrC's mass absorption efficiency at 365 nm (MAE365), more efficiently by the fall fires which were inferred to have relatively high combustion efficiencies (CE). After taking CE into consideration, the relationships between MAE365 and the levoglucosan to organic carbon ratio (a measure of the significance of agricultural fire influence) roughly converged for the fire episodes in different seasons, including those identified in February and March of 2019 by a previous campaign. Agricultural fires also influenced the determination of absorption Ångström exponent (AAE), by resulting in non-linearity for BrC's absorption spectra shown on ln-ln scale. Based on three indicators developed by this study, the non-linearity was inferred to be caused by similar chromophores although the fires were characterized by various CE levels in different seasons. In addition, for the samples without significant influence of open burning, coal combustion emissions were identified as the dominant influencing factor for MAE365, whereas none solid link was found between the solution-based AAE and aerosol source.

4.
Chemosphere ; 292: 133500, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34979207

ABSTRACT

COVID-19 rebounded in China in January 2021, with Heilongjiang as one of the worst-affected provinces. This resulted in a new round of lockdown in Harbin, the capital city of Heilongjiang, from 20 January to 22 February of 2021. A field campaign was conducted to explore the responses of haze pollution in Harbin to the lockdown. Levoglucosan was used to reflect biomass burning emissions, while the molar ratio of sulfur (the sum of sulfur dioxide and sulfate) to nitrogen (the sum of nitrogen dioxide and nitrate), i.e., RS/N, was used as an indicator for the relative importance of coal combustion and vehicle emissions. Based on a synthesis of the levoglucosan and RS/N results, reference period was selected with minimal influences of non-lockdown-related emission variations. As indicated by the almost unchanged sulfur dioxide concentrations, coal combustion emissions were relatively stable throughout the lockdown and reference periods, presumably because the associated activities, e.g., heating supply, power generation, etc., were usually uninterruptible. On the other hand, as suggested by the increase of RS/N, vehicle emissions were considerably reduced during lockdown, likely due to the stay-at-home orders. Compared to results from the reference samples, the lockdown period exhibited higher levels of ozone and various indicators for secondary aerosol formation, pointing to an enhancement of secondary pollution. In addition, photochemistry-related reactions in aqueous phase appeared to be present during the lockdown period, which have not been reported in the frigid atmosphere over Northeast China.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , China , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
5.
Environ Res ; 204(Pt C): 112324, 2022 03.
Article in English | MEDLINE | ID: mdl-34742712

ABSTRACT

Severe haze hovered over Harbin during the heating season of 2019-2020, making it one of the ten most polluted Chinese cities in January of 2020. Here we focused on the optical properties and sources of brown carbon (BrC) during the extreme atmospheric pollution periods. Enhanced formation of secondary BrC (BrCsec) was evident as relative humidity (RH) became higher, accompanied with a decrease of ozone but concurrent increases of aerosol water content and secondary inorganic aerosols. These features were generally similar to the characteristics of haze chemistry observed during winter haze events in the North China Plain, and indicated that heterogeneous reactions involving aerosol water might be at play in the formation of BrCsec, despite the low temperatures in Harbin. Although BrCsec accounted for a substantial fraction of brown carbon mass, its contribution to BrC absorption was much smaller (6 vs. 28%), pointing to a lower mass absorption efficiency (MAE) of BrCsec compared to primary BrC. In addition, emissions of biomass burning BrC (BrCBB) were inferred to increase with increasing RH, coinciding with a large drop of temperature. Since both the less absorbing BrCsec and the more absorbing BrCBB increased as RH became higher, the MAE of total BrC were largely unchanged throughout the measurement period. This study unfolded the contrast in the source apportionment results of BrC mass and absorption, and could have implications for the simulation of radiative forcing by brown carbon.


Subject(s)
Air Pollutants , Carbon , Aerosols/analysis , Air Pollutants/analysis , Biomass , Carbon/analysis , Environmental Monitoring , Seasons
6.
Sci Total Environ ; 810: 152272, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34902410

ABSTRACT

The massive agricultural sector in the Northeast Plain, which is of great importance for the food security in China, results in a huge amount of crop residues and thus substantial concern on haze pollution due to biomass burning (BB). To seek for effective control measures on BB emissions, a dramatic transition of open burning policy occurred in Heilongjiang Province, from the "legitimate burning" policy released in 2018 to the "strict prohibition" policy implemented in 2019 and beyond. Here we explored the BB aerosols during 2020-2021 in Harbin, the capital city of Heilongjiang. Although open burning was strictly prohibited by mandatory bans, agricultural fires were not actually eliminated, as indicated by the levoglucosan levels and fire count results. In general, the BB aerosols in Harbin were attributed to the overlaying of household burning and agricultural fire emissions. The former factor laid the foundation of biomass burning impacts, with BB contributions to organic carbon and elemental carbon (fBBOC and fBBEC) of 35 and 47%, respectively. The latter further enhanced the BB impacts during specific episodes breaking out in the spring of 2021 as well as the fall of 2020, when fBBOC and fBBEC increased to 64 and 57%, respectively. In addition, comparing to the fires of 2018-2019 which occurred in winter (in response to the "legitimate burning" policy), the agricultural fires were shifted to spring and fall in the 2020-2021 campaign, accompanied with an increase of combustion efficiency. This study illustrated how the agricultural fire emissions were influenced by the transition of open burning policy.


Subject(s)
Air Pollutants , Fires , Aerosols/analysis , Air Pollutants/analysis , Biomass , China , Environmental Monitoring , Particulate Matter/analysis , Policy , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...