Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Micromachines (Basel) ; 14(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37893385

ABSTRACT

A GaN high-electron-mobility transistor (HEMT) was simulated using the semiconductor simulation software Silvaco TCAD in this paper. By constructing a two-dimensional structure of GaN HEMT, combined with key models such as carrier mobility, the effects of a different state, different incidence position, different drain voltage, different LET values, and a different incidence angle on the single-event transient effect of GaN HEMT are simulated. LET stands for the linear energy transfer capacity of a particle, which refers to the amount of energy transferred by the particle to the irradiated substance on the unit path. The simulation results show that for GaN HEMTs, the single-event transient effect is more obvious when the device is in off-state than in on-state. The most sensitive location of GaN HEMTs to the single-event effect is in the region near the drain. The peak transient current increases with the increase in the drain bias and incident ion LET values. The drain charge collection time increases with the angle of incidence of heavy ion.

2.
Micromachines (Basel) ; 14(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37512768

ABSTRACT

In this paper, a P-type GaN buried layer is introduced into the buffer layer of AlGaN/GaN HEMTs, and the effect of the P-type GaN buried layer on the device's temperature characteristics is studied using Silvaco TCAD software. The results show that, compared to the conventional device structure, the introduction of a P-type GaN buried layer greatly weakens the peak of the channel electric field between the gate and drain of the device. This leads to a more uniform electric field distribution, a substantial reduction in the lattice temperature of the device, and a more uniform temperature distribution. Therefore, the phenomenon of negative resistance caused by self-heating effect is significantly mitigated, while the breakdown performance of the device is also notably enhanced.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122941, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37302194

ABSTRACT

Salmonella should be absent in pharmaceutical preparations and foods according to the regulations. However, up to now, rapid and convenient identification of Salmonella is still full of challenge. Herein, we reported a label-free surface-enhanced Raman scattering (SERS) method for direct identification of Salmonella spiked in drug samples based on a characteristic bacterial SERS marker assisted by a high-performance SERS chip and a selective culture medium. The SERS chip being fabricated through in situ growth of bimetallic Au-Ag nanocomposites on silicon wafer within 2 h, featured a high SERS activity (EF > 107), good uniformity and batch-to-batch consistency (RSD < 10 %), and satisfactory chemical stability. The directly-visualized SERS marker at 1222 cm-1 originated from bacterial metabolite hypoxanthine was robust and exclusive for discrimination of Salmonella with other bacterial species. Moreover, the method was successfully used for direct discrimination of Salmonella in mixed pathogens by using a selective culture medium, and could identify Salmonella contaminant at ∼1 CFU spiked level in a real sample (Wenxin granule, a botanical drug) after 12 h of enrichment. The combined results showed that developed SERS method is practical and reliable, and could be a promising alternative for rapid identification of Salmonella contamination in pharmaceutical and foods industries.


Subject(s)
Metal Nanoparticles , Salmonella , Silicon , Culture Media , Spectrum Analysis, Raman/methods , Gold
4.
Front Pharmacol ; 14: 1279516, 2023.
Article in English | MEDLINE | ID: mdl-38375209

ABSTRACT

Introduction: Human basic fibroblast growth factor (hbFGF) is a highly valuable multifunctional protein that plays a crucial role in various biological processes. In this study, we aim to accomplish the scaling-up production of mature hbFGF (146aa) by implementing a high cell-density fermentation and purification process on a 500-L scale, thereby satisfying the escalating demands for both experimental research and clinical applications. Methods: The hbFGF DNA fragment was cloned into a mpET-3c vector containing a kanamycin resistance gene and then inserted into Escherichia coli BL21 (DE3) plysS strain. To optimize the yield of hbFGF protein, various fermentation parameters were systematically optimized using BOX-Behnken design and further validated in large-scale fermentation (500-L). Additionally, a three-step purification protocol involving CM-Sepharose, heparin affinity, and SP-Sepharose column chromatography was developed to separate and purify the hbFGF protein. Isoelectric focusing electrophoresis, MALDI-TOF/MS analysis, amino acid sequencing, CD spectroscopy, and Western blotting were performed to authenticate its identity. The biological efficacy of purified hbFGF was evaluated using an MTT assay as well as in a diabetic deep second-degree scald model. Results: The engineered strain was successfully constructed, exhibiting high expression of hbFGF and excellent stability. Under the optimized fermentation conditions, an impressive bacterial yield of 46.8 ± 0.3 g/L culture with an expression level of hbFGF reaching 28.2% ± 0.2% was achieved in 500-L scale fermentation. Subsequently, during pilot-scale purification, the final yield of purified hbFGF protein was 114.6 ± 5.9 mg/L culture with RP-HPLC, SEC-HPLC, and SDS-PAGE purity exceeding 98%. The properties of purified hbFGF including its molecular weight, isoelectric point (pI), amino sequence, and secondary structure were found to be consistent with theoretical values. Furthermore, the purified hbFGF exhibited potent mitogenic activity with a specific value of 1.05 ± 0.94 × 106 AU/mg and significantly enhanced wound healing in a deep second-degree scald wound diabetic rat model. Conclusion: This study successfully established a stable and efficient large-scale production process of hbFGF, providing a solid foundation for future industrial production.

5.
Micromachines (Basel) ; 13(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36363882

ABSTRACT

The combined effect of total ionizing dose (TID) and electrical stress is investigated on NMOSFETs. For devices bearing both radiation and electrical stress, the threshold voltage shift is smaller than those only bearing electrical stress, indicating that the combined effect alleviates the degradation of the devices. The H bond is broken during the radiation process, which reduces the participation of H atoms in the later stage of electrical stress, thereby reducing the degradation caused by electrical stress. The positive charges of the oxide layer generated by radiation neutralize part of the tunneling electrons caused by electrical stress, and consume some of the electrons that react with the H bond, resulting in weaker degradation. In addition, the positive charges in shallow trench isolation (STI) generated by radiation create parasitic leakage paths at the interfaces of STI/Si, which increase the leakage current and reduce the positive shift of the threshold voltage. The parasitic effect generated by the positive charges of STI makes the threshold voltage of the narrow-channel device degrade more, and due to the gate edge effect, the threshold voltage of short-channel devices degrades more.

6.
Micromachines (Basel) ; 14(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36677140

ABSTRACT

In this paper, Silvaco TCAD software is used to simulate the buffer traps in AlGaN/GaN high electron mobility transistors (HEMTs), and its effects on the breakdown performance and key parameters of the devices are investigated by changing the position and concentration of the acceptor traps in the buffer layer. The results show that with the increase of trap concentration, the traps capture electrons and reduce the off-state leakage current, which can improve breakdown voltage of the devices. At the same time, as the trap concentration increases, the ionized traps make a high additional electric field near the drain edge, leading to the decrease of breakdown voltage. With the combined two effects above, the breakdown voltage almost ultimately saturates. When the source-to-gate (Access-S) region in the GaN buffer layer is doped alone, the minimum and most linear leakage current for the same trap concentrations are obtained, and the additional electric field has a relatively small effect on the electric field peak near the drain as the ionized traps are furthest from drain. All these factors make the breakdown voltage increase more controllably with the Access-S region doping, and it is a more potential way to improve the breakdown performance.

7.
Sci Total Environ ; 627: 158-165, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29426137

ABSTRACT

PURPOSE: This study aimed to investigate the spatial distribution pattern of the prevalence of congenital heart disease (CHD) in children in Qinghai-Tibetan Plateau (QTP), a high-altitude region in China. METHODS: Epidemiological data from a survey on the prevalence of CHD in Qinghai Province including 288,066 children (4-18 years) were used in this study. The prevalence and distribution pattern of CHD was determined by sex, CHD subtype, and nationality and altitude. Spatial pattern analysis using Getis-Ord Gi⁎ was used to identify the spatial distribution of CHD. Bayesian spatial binomial regression was performed to examine the relationship between the prevalence of CHD and environmental risk factors in the QTP. RESULTS: The prevalence of CHD showed a significant spatial clustering pattern. The Tibetan autonomous prefecture of Yushu (average altitude > 4000 m) and the Mongolian autonomous county of Henan (average altitude > 3600 m) in Huangnan had the highest prevalence of CHD. Univariate analysis showed that with ascending altitude, the total prevalence of CHD, that in girls and boys with CHD, and that of the subtypes PDA and ASD increasing accordingly. Thus, environmental factors greatly contributed to the prevalence of CHD. CONCLUSIONS: The prevalence of CHD shows significant spatial clustering pattern in the QTP. The CHD subtype prevalence clustering pattern has statistical regularity which would provide convenient clues of environmental risk factors. Our results may provide support to make strategies of CHD prevention, to reduce the incidence of CHD in high altitude regions of China.


Subject(s)
Heart Diseases/epidemiology , Adolescent , Altitude , Bayes Theorem , Child , Child, Preschool , China/epidemiology , Environmental Exposure/statistics & numerical data , Female , Heart Diseases/congenital , Humans , Male , Prevalence , Tibet
8.
Comput Stat Data Anal ; 54(4): 891-905, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-21516260

ABSTRACT

The functional coefficient regression models assume that the regression coefficients vary with some "threshold" variable, providing appreciable flexibility in capturing the underlying dynamics in data and avoiding the so-called "curse of dimensionality" in multivariate nonparametric estimation. We first investigate the estimation, inference, and forecasting for the functional coefficient regression models with dependent observations via penalized splines. The P-spline approach, as a direct ridge regression shrinkage type global smoothing method, is computationally efficient and stable. With established fixed-knot asymptotics, inference is readily available. Exact inference can be obtained for fixed smoothing parameter λ, which is most appealing for finite samples. Our penalized spline approach gives an explicit model expression, which also enables multi-step-ahead forecasting via simulations. Furthermore, we examine different methods of choosing the important smoothing parameter λ: modified multi-fold cross-validation (MCV), generalized cross-validation (GCV), and an extension of empirical bias bandwidth selection (EBBS) to P-splines. In addition, we implement smoothing parameter selection using mixed model framework through restricted maximum likelihood (REML) for P-spline functional coefficient regression models with independent observations. The P-spline approach also easily allows different smoothness for different functional coefficients, which is enabled by assigning different penalty λ accordingly. We demonstrate the proposed approach by both simulation examples and a real data application.

9.
Yi Chuan ; 30(1): 51-8, 2008 Jan.
Article in Chinese | MEDLINE | ID: mdl-18244902

ABSTRACT

National Infrastructure of Chinese Genetic Resources is a part of National Infrastructure of Natural Resources for Science and Technology. To strengthen and standardize the collection, integration, conservation, sharing and utilization of Chinese Genetic Resources, we have been carrying out the research on standardization of trimming, integration and sharing of Chinese Genetic Resources, according the advanced experiences abroad on that and abiding by the related laws and regulations. In the paper, National Infrastructure of Chinese Genetic Resources will be introduced on the standardization of integration, database construction and sharing of Chinese Genetic Resources.


Subject(s)
Genetics , Resource Allocation/standards , China , Databases, Genetic/standards , Humans , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...