Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Inorg Chem ; 63(7): 3599-3609, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38333957

ABSTRACT

It is of great significance to explore high activity, low overpotential, and outstanding durability electrocatalysts without precious metals for oxygen evolution reaction to reduce the energy consumption in the electrolysis of water to product hydrogen. Metal organic frameworks (MOFs) with periodic structure and uniform pore distribution have been widely used as precursors for the synthesis of transition metal electrocatalysts. Herein, we first synthesized nanoscale Fe-soc-MOFs with relatively high specific surface area and in situ converted it into nickel-iron double layer hydroxide/MOF (FeNi LDH/MOF) by Ni2+ etching. Finally, a nickel-iron phosphide/nitrogen-doped carbon cubic nanocage (FeNiP/NC) was obtained by calcination and phosphating. FeNiP/NC with its unique core-shell structure has an overpotential of only 240 mV at a current density of 10 mA/cm2 and can be continuously electrolyzed for 45 h. High catalytic activity of FeNiP/NC is mainly attributed to the action of Fe and Ni bimetals and the synergistic effect between FeNiP and N-doped porous carbon, which was confirmed by the calculation of density functional theory (i.e., Gibbs free energy). After a long period of electrolysis, FeNiP was converted to MOOH (M = Fe and Ni) and became the new active site. This study provides a feasible optimization strategy for the development of high-efficiency three-dimensional electrode materials without precious metals.

2.
Dalton Trans ; 53(11): 5291-5300, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38411208

ABSTRACT

Noble metal-based catalysts such as RuO2 and IrO2 are widely used in the catalysis of the OER. However, because of their high price and poor stability, it is urgent to develop transition metal-based electrocatalysts with low precious metal doping as an alternative. Layered double hydroxides (LDHs) grown on 3D metal-organic frameworks (MOFs) are ideal for doping precious metals owing to abundant defects at the heterointerface, large surface area, and intrinsic oxygen evolution activity. In this study, a novel FeNi LDH/MOF heterostructure was prepared via a two-step solvothermal method using Fe-soc-MOFs as the substrate. Subsequently, Ru was introduced through a hydrothermal process. The as-synthesized Ru@FeNi LDH/MOF has an overpotential of only 242 mV at a current density of 10 mA cm-2 and can be used in continuous electrolysis for 48 h. Its unique nanocubic core-shell structure and flower-like LDHs on its surface provide a large number of active sites, which become the key to ensuring high activity and stability. With the doping of Ru, the electronic structure was adjusted and electron transfer was accelerated, further improving electrochemical activity. This study provides a new idea for developing transition metal-based catalysts with low noble metal loading.

3.
BMC Pulm Med ; 23(1): 375, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803309

ABSTRACT

BACKGROUND: Lung salivary-type tumors originating from bronchial submucosal glands are rare, only four types of salivary gland-type tumors are listed in 2015 WHO classification of lung tumors. Here, we report a rare case of oncocytic carcinoma (OC) in the right main bronchus. CASE PRESENTATION: A 34-year-old man presented to our hospital with a two-month history of recurrent hemoptysis and with one month of inspiratory dyspnea. Pulmonary function tests showed mild restrictive ventilatory dysfunction and severe diffusion dysfunction. Furthermore, the flow volume loop showed a variable extra-thoracic obstruction. Computed tomography (CT) of the chest revealed that a polypiform nodule of 13 mm in diameter was at the proximal right main bronchus. Testing for purified protein derivative was positive (category 2). The nodule was resected under bronchoscopy. The bronchial aspirate was negative for mycobacterium tuberculosis and tumor cells. The biopsy sample showed a solid and acinar predominant pattern with abundant eosinophilic cytoplasm. The bronchial mucosa was destroyed and replaced by tumor cells. The loose edematous stromal reaction could be seen in a local area. Immunohistochemically, tumor cells were positive for CK, EMA, Vimentin, CD117, CK7, S100, Mammaglobin and SOX10. Only scattered tumor cells were stained by basal cell markers, including CK5/6, P40 and P63. Electron microscopy revealed numerous swelling mitochondria with lacking mitochondrial cristae in tumor cells. Fluorescence in situ hybridization (FISH) testing for MAML2 and ETV6 rearrangement were negative. Next-generation sequencing analysis of 520 genes in the tissue biopsy specimen showed no somatic mutation. The diagnosis of OC was made. Subsequently, the patient underwent a right upper lobectomy with sleeve resection of the main bronchus and lymph dissection. No recurrent evidence was seen during two years of chest CT follow-up. CONCLUSIONS: To our knowledge, this is the first case of primary OC in the bronchus. This patient has no recurrence during two years of follow-up, indicating that primary OC in the bronchus has the same favorable prognosis as in salivary glands. Moreover, complete excision and thorough sampling to know the invasive growth pattern is important to reach the correct diagnosis.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Male , Humans , Adult , In Situ Hybridization, Fluorescence , Bronchi/surgery , Bronchoscopy
4.
Plants (Basel) ; 12(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687359

ABSTRACT

Celtis julianae Schneid. is widely planted as a versatile tree species with ecological and economic significance. In September 2022, a leaf blotch disease of C. julianae was observed in Nanjing, Jiangsu, China, with an infection incidence of 63%. The disease led to severe early defoliation, significantly affecting the ornamental and ecological value of the host tree. The accurate identification of pathogens is imperative to conducting further research and advancing disease control. Koch's postulates confirmed that the fungal isolates (B1-B9) were pathogenic to C. julianae. The morphology of the characteristics of the pathogen matched those of Alternaria spp. The internal transcribed spacer region (ITS), large subunit (LSU) and small subunit (SSU) regions of rRNA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Alternaria major allergen gene (Alt a 1), RNA polymerase second largest subunit (RPB2), and portions of translation elongation factor 1-alpha (TEF1-α) genes were sequenced. Based on multi-locus phylogenetic analyses and morphology, the pathogenic fungi were identified as Alternaria arborescens and A. italica. The findings provided useful information for disease management and enhanced the understanding of Alternaria species diversity in China. This is the first report of A. arborescens and A. italica causing leaf blotch of C. julianae in China and worldwide.

5.
Small ; 19(11): e2207044, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642802

ABSTRACT

Precise design of low-cost, efficient and definite electrocatalysts is the key to sustainable renewable energy. Herein, this work develops a targeted-anchored and subsequent spontaneous-redox strategy to synthesize nickel-iron layered double hydroxide (LDH) nanosheets anchored with monodispersed platinum (Pt) sites (Pt@LDH). Intermediate metal-organic frameworks (MOF)/LDH heterostructure not only provides numerous confine points to guarantee the stability of Pt sites, but also excites the spontaneous reduction for PtII . Electronic structure, charge transfer ability and reaction kinetics of Pt@LDH can be effectively facilitated by the monodispersed Pt moieties. As a result, the optimized Pt@LDH that with the 5% ultra-low content Pt exhibits the significant increment in electrochemical water splitting performance in alkaline media, which only afford low overpotentials of 58 mV at 10 mA cm-2 for hydrogen evolution reaction (HER) and 239 mV at 10 mA cm-2 for oxygen evolution reaction (OER), respectively. In a real device, Pt@LDH can drive an overall water-splitting at low cell voltage of 1.49 V at 10 mA cm-2 , which can be superior to most reported similar LDH-based catalysts. Moreover, the versatility of the method is extended to other MOF precursors and noble metals for the design of ultrathin LDH supported monodispersed noble metal electrocatalysts promoting research interest in material design.

6.
Mater Today Bio ; 16: 100442, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36199558

ABSTRACT

The ongoing circulating energy loss, low reactive oxygen species (ROS) accumulation and poor immunogenicity of tumors make it difficult to induce sufficient immunogenic cell death (ICD) in the tumor immunosuppressive microenvironment (TIME), resulting in unsatisfactory immunotherapy efficacy. Furthermore, for highly malignant tumors, simply enhancing ICD is insufficient for exhaustively eliminating the tumor and inhibiting metastasis. Herein, we propose a unique magnetothermal-dynamic immunotherapy strategy based on liquid-solid transformation porous versatile implants (Fe3O4/AIPH@PLGA) that takes advantage of less energy loss and avoids ongoing circulating losses by minimally invasive injection into tumors. In addition, the magnetothermal effect regresses and eliminates tumors that are not limited by penetration to simultaneously trigger 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) decomposition and generate a large amount of oxygen-irrelevant free radicals and heat shock protein (HSP) accumulation by heating, evoking both intracellular oxidative stress and endoplasmic reticulum (ER) stress to induce large-scale ICD and enhance tumor immunogenicity. More importantly, in orthotopic bilateral breast tumor models, a significant therapeutic effect was obtained after combining amplified ICD with CTLA4 checkpoint blockade. The 21-day primary and distant tumor inhibition rates reached 90%, and the underlying mechanism of the effective synergetic strategy of inducing the T-cell-related response, the immune memory effect and TIME reprogramming in vivo was verified by immune cell analyses. This remarkable therapeutic effect provides a new direction for antitumor immunotherapy based on magnetothermally controlled oxygen-independent free radical release.

7.
Inorg Chem ; 61(38): 15273-15286, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36106618

ABSTRACT

Synergistic interaction derived by a heterointerface structure on the surface of metal oxide catalysts has a crucial role in improving the catalytic activity. In this work, MnOx nanoparticles were dispersed on the surface of CeO2 nanorods to generate a MnOx-CeO2 heterointerface structure, and its effect on toluene adsorption and catalytic oxidation performance was investigated. The results show that MnOx is well dispersed on CeO2 nanorods, and the interaction of Mn-Ce significantly reduces the strength of the Ce-O bond and increases the conversion of Ce4+ to Ce3+, which further promotes the activation of oxygen. Compared to MnOx on SiO2 without synergistic interaction, the enhancement of toluene adsorption on this novel MnOx-CeO2 hetero-interface structure can also make a great contribution to the improvement of the catalytic reaction process. Among them, the synergistic effect of CeO2-MnOx could reduce the temperature of 90% toluene conversion to 210 °C (this value is 83 °C lower than that over pure CeO2 nanorods). In addition, the fresh MnOx-CeO2 catalyst not only shows excellent stability and moisture resistance but also retains highly low-temperature activity even after thermal aging at 750 °C for 100 h.

8.
J Sep Sci ; 45(18): 3382-3392, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35851721

ABSTRACT

Epimedium has a wide range of clinical applications; however, there have been numerous reports of adverse reactions in recent years, which has resulted in it being changed from a widely recognized "nontoxic" to a "potentially toxic" traditional Chinese medicine. The combination of Epimedium and Ligustri lucidi fructus is commonly used in the clinic. The purpose of this study was to investigate the pharmacokinetic characteristics of Epimedium and Ligustri lucidi fructus to explore the possible synergism and reduction in toxicity. Based on liquid chromatography tandem mass spectrometry, a method was established for the determination of icariin, epimedin A, epimedin B, epimedin C, baohuoside Ⅰ, and specnuezhenide in biological samples and was successfully applied to study the pharmacokinetics of the drug pair. The results showed that the five flavonoids (specnuezhenide could not be detected) could be rapidly absorbed into the blood, and the second peak time in vivo was earlier after the combination, indicating that the metabolic pathway may be changed. In addition, combination with Ligustri lucidi fructus could significantly reduce the concentration of 5 flavonoids in vivo and increase their elimination rate, which may attenuate their virulence, thus providing a reference for the rational clinical use of Epimedium.


Subject(s)
Drugs, Chinese Herbal , Epimedium , Ligustrum , Chromatography, High Pressure Liquid , Flavonoids , Ligustrum/chemistry , Medicine, Chinese Traditional
9.
Sci Rep ; 12(1): 6218, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35418657

ABSTRACT

With the rapid development of distributed energy resources and natural gas power generation, multi-energy microgrid (MEMG) is considered as a critical technology to increase the penetration of renewable energy and achieve the target of carbon emission reduction. Therefore, this paper proposes a low-carbon economic dispatch model for MEMG to minimize the daily operation cost by considering integrated demand response (IDR) and multistep carbon trading. Specifically, IDR operation includes shifting of shiftable electric load, adjusting of flexible thermal load and cooling load, and it is employed to decrease operation cost. Besides, the multistep carbon trading means that different carbon trading prices correspond to different carbon trading volumes, which is applied to stringently restrict carbon emission. The simulation results show that the proposed model can effectively reduce the carbon emission while greatly decrease the operation cost.

10.
Nat Prod Res ; 36(10): 2554-2558, 2022 May.
Article in English | MEDLINE | ID: mdl-33729065

ABSTRACT

Bailemian capsule (BLMC) is a Chinese patent drug for treating insomnia with excellent curative effects. But there are few researches on it. In this research, a rapid separation and identification method using UPLC-QE-Orbitrap-MS was established, and 228 identified compounds were separated within 18 min. The structures of compounds were preliminarily determined by comparing the retention time and fragmentation law. Furthermore, multiple databases were used to integrate the compound targets of BLMC and the disease targets related to insomnia. After the intersection of the two sets of targets, a protein-protein interaction network and a drug-target-disease pharmacological network were established, then using the DAVID database to perform GO analysis and KEGG analysis on the common targets to find related pathways. Finally, a total of 289 common targets and 136 pathways were found to participate in the mechanism.


Subject(s)
Drugs, Chinese Herbal , Sleep Initiation and Maintenance Disorders , Databases, Factual , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Humans , Research Design , Sleep Initiation and Maintenance Disorders/drug therapy , Technology
11.
Biomed Chromatogr ; 36(1): e5251, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34606105

ABSTRACT

Osmundacetone is a potential medicinal substance existing in ferns and has excellent antioxidant effects. This research aims to obtain the pharmacokinetic data for and metabolite products of osmundacetone. An UPLC-MS/MS quantitative method was established for the measurement of osmundacetonein in rat plasma over a linear range of 6.72-860.00 ng/ml. The signal to noise ratio of the lower limit of quantification was 60:1, the precision was <9.74% and the method had good selectivity and stability. The established method was successfully applied to the pharmacokinetic study of osmundacetone for the first time. Osmundacetone reached a peak at 0.25 h with a maximum value of 3283.33 µg/L. The apparent volume of distribution not multiplied by the bioavailability was 127.96 L/kg, and the half-life of osmundacetone was 5.20 h. At the same time, an UPLC-QE-Orbitrap-HRMS method was established to identify metabolites in plasma, urine and feces for the first time. A total of 30 metabolites were identified and the metabolic profile of osmundacetone was defined. In general, we have established a mass spectrometry quantitative method for osmundacetone for the first time and characterized its metabolic characteristics in rats.


Subject(s)
Chromatography, High Pressure Liquid/methods , Ketones , Tandem Mass Spectrometry/methods , Animals , Ketones/blood , Ketones/chemistry , Ketones/pharmacokinetics , Limit of Detection , Linear Models , Male , Rats , Rats, Wistar , Reproducibility of Results
12.
ACS Omega ; 6(13): 9176-9187, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33842786

ABSTRACT

Insomnia is an anabatic epidemiology, while the mechanism is extremely complicated; it remains one of the major scientific challenges in life sciences. Because of the advantage of having a similar genetic background and circadian rhythm as those of humans, the Drosophila melanogaster model organism is hugely popular in sleep-related drug screening studies. Seven-day-old virgin D. melanogaster was used to establish the sleep deprivation model by repeated light stimulation at night. Using PySolo activity monitoring system and Drosophila activity as indices, the effective fractions of Zhi-Zi-Hou-Po decoction (ZZHPD) for insomnia were screened; the content of monoamine neurotransmitters dopamine (DA), 5-hydroxyindole-3-acetic acid (5-HIAA), Homovanillic acid (HVA), and 5-hydroxytryptamine (5-HT) in the brain of D. melanogaster were determined by high-performance liquid chromatography-electro-chemical detection. The herb-compound-target-disease target network were further constructed through network pharmacology to identify the potential targets and pathways of ZZHPD in the intervention of insomnia. Finally, the molecular docking method was used for evaluating the binding characteristics of important compounds from ZZHPD with related targets. The results showed that a certain dose of ZZHPD and its petroleum ether, dichloromethane, ethyl acetate, and n-butanol fractions could improve sleep. The dichloromethane fraction from ZZHPD extracts showed the best anti-insomnia effect among all extracts. It can also reduce the content of DA and HVA in the brain of D. melanogaster and increase 5-HT and 5-HIAA levels. The network pharmacology showed that the main active ingredients in ZZHPD included magnolol, honokiol, hesperidin, and so forth. According to the screening conditions, there were 71 targets and the result of KEGG enrichment analysis revealed that 73 pathways were associated with insomnia, which were primarily involved in inflammatory response, central neurotransmitter regulation, and apoptosis to relieve insomnia. The molecular docking results clarified that naringenin and apigenin have an intimate relationship with GABAA receptor, histamine H1, orexin receptor type 2, and interleukin-6. The mechanism of relieving insomnia is the result of the interaction of multi-components, multi-targets, and multi-pathways, which provides a certain theoretical basis for the treatment of insomnia and related diseases as well as clinical research.

13.
ACS Omega ; 6(6): 4495-4505, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33623855

ABSTRACT

Phlomis brevidentata H.W.Li Radix (PbR) is a rare traditional Tibetan medicine, and it is widely used in the Chinese Tibetan region for the treatment of pharyngitis, pneumonia, and so forth. Nevertheless, there is very little research on its modern pharmacy, and the active ingredients and mechanisms against these diseases remain unknown. In this study, we employed the qualitative analysis and pharmacokinetic based on LC-MS technology and network pharmacology to explore the active ingredients and mechanisms of PbR for treatment of pneumonia. Ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-Q-TOF/MS) methodology was applied to identify the chemical composition of PbR. Meanwhile, a UPLC-MS/MS method was developed to quantify three active constituents (sesamoside, shanzhiside methyl ester, and barlerin) in rat plasma for the pharmacokinetic analysis after oral administration of PbR. Finally, in order to clarify the anti-pneumonia mechanism of this rare Tibetan medicine, a comprehensive network pharmacology strategy was applied. As a result, a total of 23 compounds were identified in PbR, including 14 iridoid glycosides, 7 phenylethanoid glycosides, and 2 other kinds of compounds. Pharmacokinetic studies have shown that the three compounds exhibit extremely similar pharmacokinetic characteristics, possibly due to their highly analogous chemical structure. We speculate that the iridoid glycosides may be the main active component in PbR. Then, the three iridoid glycoside constituents absorbed into blood were subjected to network pharmacology analysis for treatment of pneumonia. Compound-target-disease, gene ontology bioanalysis, KEGG pathway, and other network pharmacology analysis methods were applied to reveal that five main targets of the three iridoid glycosides, namely, GAPDH, ALB, MAPK1, AKT1, and EGFR, were significant in the regulation of the above bioprocesses and pathways. These results provide a basis for elucidating the bioactive compounds and the pharmacological mechanisms of P. brevidentata H.W.Li radix under clinical applications.

14.
Biomed Pharmacother ; 131: 110700, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33152906

ABSTRACT

OBJECTIVE: This study aimed to assess the effect and mechanism of i-type lysozyme on cutaneous wound healing animal model and Multiple cell models both in vivo and in vitro. METHODS: Therefore, to evaluate its regenerative efficacy on wound healing process, we daily applied i-type lysozyme on murine full-thickness excisional wounds. After sacrifice on indicated days, skin tissues around surgical defects were harvested and assessed for re-epithelialization, granulation tissue formation, neovascularization and remodeling. To elucidate the underlying mechanisms, i-type lysozyme was analyzed for its tissue regenerative potency on the proliferation, invasion, migration and tube formation against keratinocytes, fibroblasts and endothelial cells. Antioxidant and antimicrobial experiments were also conducted to elucidate protective ability of i-type lysozyme to wound bed. RESULTS: It displayed excellent bi-directional regulation in wound repair, with significant acceleration of epidermal and dermal regeneration as well as the efficient attenuation of excessive collagen deposition and fibrosis in the surgical lesion. I-type lysozyme treatment augmented the proliferation and migration of HaCaT, NIH 3T3 and HUVECs, enhanced the invasion of HaCaT and HUVECs as well as accelerated tube formation of HUVECs. Additionally, it significantly recovered the proliferation of H2O2-damaged cells, whereas represented no microbicidal effect under effective concentration of wound healing. CONCLUSION: Our findings demonstrate the bi-directional regulation of i-type lysozyme in wound healing process through promoting tissue regeneration while hampering scar formation, implying that it is a promising therapeutic agent for wound repair.


Subject(s)
Muramidase/pharmacology , Wound Healing/drug effects , Animals , Cell Movement/drug effects , Collagen/metabolism , HaCaT Cells , Human Umbilical Vein Endothelial Cells , Humans , Keratinocytes/drug effects , Male , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Re-Epithelialization/drug effects , Regeneration/drug effects , Wound Healing/physiology
15.
Metab Brain Dis ; 35(8): 1433, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32926290

ABSTRACT

The original article contains mistake. The authors want to add Wenhui Pei as first co-author and Fang Fang as co-corresponding author.

16.
J Cell Mol Med ; 24(13): 7451-7459, 2020 07.
Article in English | MEDLINE | ID: mdl-32501652

ABSTRACT

Numb is known as a cell fate determinant as it identifies the direction of cell differentiation via asymmetrical partitioning during mitosis. It is considered as a tumour suppressor, and a frequent loss of Numb expression in breast cancer is noted. Numb forms a tri-complex with p53 and E3 ubiquitin ligase HDM2 (also known as MDM2), thereby preventing the ubiquitination and degradation of p53. In this study, we examined Numb expression in 125 patients with triple-negative breast cancer (TNBC). The results showed that 61 (48.8%) patients presented with a deficient or decreased Numb expression. The percentage of Ki67 > 14% in the retained Numb group was significantly lower than that in the decreased and deficient Numb groups (86.00% vs. 98.40%, P = .0171). This study aimed to detect the expression and migration of Numb, HDM2 and p53 in the membrane, cytoplasmic and nuclear fractions of normal mammary epithelial cell line MCF-10A and basal-like TNBC cell line MDA-MB-231. We obtained the cell fractions to identify changes in these three protein levels after the re-expression of NUMB in the MDA-MB-231 cells and the knocking down of NUMB in the MCF-10A cells. Results showed that Numb regulates p53 levels in the nucleus where the protein levels of Numb are positively correlated with p53 levels, regardless if it is re-expressed in the MDA-MB-231 cells or knocked down in the MCF-10A cells. Moreover, HDM2 was remarkably decreased only in the membrane fraction of NUMB knock-down cells; however, its mRNA levels were increased significantly. Our results reveal a previously unknown molecular mechanism that Numb can migrate into the nucleus and interact with HDM2 and p53.


Subject(s)
Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Aged , Breast/metabolism , Breast/pathology , Cell Line, Tumor , Female , Green Fluorescent Proteins/metabolism , Humans , Middle Aged , Proto-Oncogene Proteins c-mdm2/metabolism , Subcellular Fractions/metabolism , Triple Negative Breast Neoplasms/pathology
17.
Metab Brain Dis ; 35(2): 315-325, 2020 02.
Article in English | MEDLINE | ID: mdl-31786727

ABSTRACT

As a Traditional Chinese Medicine (TCM), Shuangxia Decoction (SXD) has been used to treat insomnia in oriental countries for more than thousands of years and it presents remarkable clinical effects. However, its active pharmacological fraction and the mechanism of sedative-hypnotic effects have not been explored. In this paper, we investigated active pharmacological fraction and revealed the detailed mechanisms underlying the sedative-hypnotic effects of SXD. It showed that SXD water extract compared to ethanol extract possessed better sedative effects on locomotion activity in normal mice and increased sleep duration in subhypnotic dose of sodium pentobarbital-treated mice. SXD alleviated p-chlorophenylalanine (PCPA) -induced insomnia by increasing the content of 5-HT in cortex [F (4, 55) = 12.67], decreasing the content of dopamine (DA) and norepinephrine (NE). Furthermore, SXD enhanced the expression of 5-HT1A and 5-HT2A receptors in hypothalamic and reduced serum levels of IL-1,TNF-α [F (5, 36) = 15.58]. In conclusion, these results indicated that SXD produced beneficial sedative and hypnotic bioactivities mediated by regulating the serotonergic and immune system.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Fenclonine/toxicity , Immunity, Cellular/immunology , Receptors, Serotonin/immunology , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep Initiation and Maintenance Disorders/immunology , Animals , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Female , Immunity, Cellular/drug effects , Male , Mice , Pinellia , Prunella , Random Allocation , Rats , Rats, Wistar , Receptors, Serotonin/biosynthesis , Serotonin/biosynthesis , Serotonin Antagonists/toxicity , Serotonin Receptor Agonists/pharmacology , Serotonin Receptor Agonists/therapeutic use , Sleep Initiation and Maintenance Disorders/chemically induced
18.
World J Surg Oncol ; 17(1): 181, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31684955

ABSTRACT

BACKGROUND: Lymph node inclusions are foci of ectopic tissue in lymph nodes, which were reported in different areas of the body. However, inclusions in the mediastinal lymph node are rare. Here, we report the first case of glandular inclusion within the parenchyma of the intrapulmonary lymph node in a patient with primary lung adenocarcinoma. CASE PRESENTATION: A computed tomography (CT) scan showed a solid pulmonary nodule in the right upper lobe in a 44-year-old man. After a fine needle aspiration biopsy diagnosis of adenocarcinoma, lobectomy and lymph dissection were performed. Histological sections of the lung demonstrated a papillary predominant adenocarcinoma and one intrapulmonary lymph node, which displayed glandular inclusion occupying the node parenchyma. The gland inclusion was very similar to metastasis, but was formed by two layers of epithelial cells, and the abluminal cells were positive for P63, P40, and CK5/6. The patient has remained alive without recurrence and metastasis at the last follow-up before publication. CONCLUSIONS: It is very important to correctly diagnose a lymph node inclusion for proper clinical management.


Subject(s)
Adenocarcinoma of Lung/diagnosis , Biomarkers, Tumor/analysis , Lung Neoplasms/diagnosis , Lymph Nodes/pathology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/surgery , Adult , Biopsy, Fine-Needle , Diagnosis, Differential , Humans , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Lymph Node Excision , Lymph Nodes/diagnostic imaging , Lymph Nodes/surgery , Lymphatic Metastasis/diagnosis , Male , Pneumonectomy , Tomography, X-Ray Computed , Treatment Outcome
19.
Sci Rep ; 9(1): 2261, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783193

ABSTRACT

The threat of a malicious attack is one of the major security problems in complex networks. Resilience is the system-level self-adjusting ability of a complex network to retain its basic functionality and recover rapidly from major disruptions. Despite numerous heuristic enhancement methods, there is a research gap in maximizing network resilience: current heuristic methods are designed to immunize vital nodes or modify a network to a specific onion-like structure and cannot maximize resilience theoretically via network structure. Here we map complex networks onto a physical elastic system to introduce indices of network resilience, and propose a unified theoretical framework and general approach, which can address the optimal problem of network resilience by slightly modifying network structures (i.e., by adding a set of structural edges). We demonstrate the high efficiency of this approach on three realistic networks as well as two artificial random networks. Case studies show that the proposed approach can maximize the resilience of complex networks while maintaining their topological functionality. This approach helps to unveil hitherto hidden functions of some inconspicuous components, which in turn, can be used to guide the design of resilient systems, offer an effective and efficient approach for mitigating malicious attacks, and furnish self-healing to reconstruct failed infrastructure systems.

20.
Cancer Manag Res ; 10: 1005-1013, 2018.
Article in English | MEDLINE | ID: mdl-29760568

ABSTRACT

BACKGROUND: Mutations of BRAFV600E and TERT promoters are associated with thyroid cancer development. This study further investigated association of these mutations with clinicopathological characteristics from patients with papillary thyroid carcinoma (PTC). METHODS: Tumor tissues from 342 PTC patients were obtained for DNA extraction and polymerase chain reaction amplification to detect the BRAFV600E mutation using amplification-refractory mutation system-polymerase chain reaction. TERT promoter mutations were assessed using Sanger DNA sequencing. The association of these gene mutations with clinicopathological characteristics was then statistically analyzed. RESULTS: Two hundred and seventy of 342 (78.9%) PTC patients harbored the BRAFV600E mutation, which was associated with older age male patients. Moreover, TERT promoter mutations occurred in 12 of 342 (3.5 %) PTC patients, all of whom also had the BRAF mutation. One hundred thirty-three patients with papillary thyroid microcarcinoma (PTMC) had no TERT mutations. Statistically, the coexistence of BRAF and TERT promoter mutations were significantly associated with older age, larger tumor size, extrathyroidal extension, and advanced tumor stage, but not with central lymph node metastasis, lateral lymph node metastasis, numbers of lymph node metastasis >5, and numbers of involved/harvested lymph nodes (No. of LNs involved or harvested). The multivariate analyses showed older age (odds ratio [OR], 2.194; 95% CI: 1.117-4.311; p=0.023), larger tumor size (OR, 4.100; 95% CI: 2.257-7.450; p<0.001), and multiplicity (OR, 2.240; 95% CI: 1.309-3.831; p=0.003) were all independent predictors for high prevalence of extrathyroidal extension. However, there was no statistical association with any clinicopathological characteristics except for Hashimoto thyroiditis in PTMC. CONCLUSION: The current study demonstrated that the coexistence of BRAF and TERT promoter mutations were associated with the PTC aggressiveness, although these mutations were not associated with PTC lymph node metastasis or with PTMC.

SELECTION OF CITATIONS
SEARCH DETAIL
...