Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Arch Toxicol ; 98(2): 365-374, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142431

ABSTRACT

Several recent reports indicate health hazards for workers with below occupational limit exposure to benzene (BZ). Our updated review indicates that such low exposures induced traditional as well as novel toxicity/genotoxicity, e.g., increased mitochondria copy numbers, prolongation of telomeres, impairment of DNA damage repair response (DDRR), perturbations of expression in non-coding RNAs, and epigenetic changes. These abnormalities were associated with alterations of gene expression and cellular signaling pathways which affected hematopoietic cell development, expression of apoptosis, autophagy, etc. The overarching mechanisms for induction of health risk are impaired DDRR, inhibition of tumor suppressor genes, and changes of MDM2-p53 axis activities that contribute to perturbed control for cancer pathways. Evaluation of the unusual dose-responses to BZ exposure indicates cellular over-compensation and reprogramming to overcome toxicity and to promote survival. However, these abnormal mechanisms also promote the induction of leukemia. Further investigations indicate that the current exposure limits for workers to BZ are unacceptable. Based on these studies, the new exposure limits should be less than 0.07 ppm rather than the current 1 ppm. This review also emphasizes the need to conduct appropriate bioassays, and to provide more reliable decisions on health hazards as well as on exposure limits for workers. In addition, it is important to use scientific data to provide significantly improved risk assessment, i.e., shifting from a population- to an individual-based risk assessment.


Subject(s)
Benzene , Occupational Exposure , Humans , Benzene/toxicity , Occupational Exposure/adverse effects , Occupational Exposure/analysis , DNA Damage , DNA Repair , Risk Assessment
2.
Nucleic Acids Res ; 51(21): e109, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37870450

ABSTRACT

Error-corrected next-generation sequencing (ecNGS) is an emerging technology for accurately measuring somatic mutations. Here, we report paired-end and complementary consensus sequencing (PECC-Seq), a high-accuracy ecNGS approach for genome-wide somatic mutation detection. We characterize a novel 2-aminoimidazolone lesion besides 7,8-dihydro-8-oxoguanine and the resulting end-repair artifacts originating from NGS library preparation that obscure the sequencing accuracy of NGS. We modify library preparation protocol for the enzymatic removal of end-repair artifacts and improve the accuracy of our previously developed duplex consensus sequencing method. Optimized PECC-Seq shows an error rate of <5 × 10-8 with consensus bases compressed from approximately 25 Gb of raw sequencing data, enabling the accurate detection of low-abundance somatic mutations. We apply PECC-Seq to the quantification of in vivo mutagenesis. Compared with the classic gpt gene mutation assay using gpt delta transgenic mice, PECC-Seq exhibits high sensitivity in quantitatively measuring dose-dependent mutagenesis induced by Aristolochic acid I (AAI). Moreover, PECC-Seq specifically characterizes the distinct genome-wide mutational signatures of AAI, Benzo[a]pyrene, N-Nitroso-N-ethylurea and N-nitrosodiethylamine and reveals the mutational signature of Quinoline in common mouse models. Overall, our findings demonstrate that high-accuracy PECC-Seq is a promising tool for genome-wide somatic mutagenesis quantification and for in vivo mutagenicity testing.


Subject(s)
High-Throughput Nucleotide Sequencing , Animals , Mice , Consensus , High-Throughput Nucleotide Sequencing/methods , Mice, Transgenic , Mutagenesis/genetics , Mutation , Sequence Analysis, DNA/methods , Male
3.
Food Chem Toxicol ; 178: 113872, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37271276

ABSTRACT

PIG-A gene mutations can be detected in humans, and PIG-A assays can potentially predict the risk of exposure to carcinogens. However, extensive, population-based studies to validate this are lacking. We studied a cohort of occupational coke oven workers with chronic high exposure to carcinogenic polycyclic aromatic hydrocarbons, which are well-studied genotoxins classified by the IARC as carcinogenic to humans. Peripheral blood erythrocytes of workers were assessed for gene mutations using a PIG-A assay, and chromosome damage using the cytokinesis-block micronucleus test with lymphocytes. Two sample populations from a non-industrialized city and new employees in industrial plants were selected as controls. We observed a significantly elevated PIG-A mutation frequency (MF) and increased frequencies of micronuclei (MN) and nuclear buds (NBUDs) in coke oven workers, compared with levels in the control groups. We found that the coke oven workers with different lengths of service had a relatively high mutation frequency. Overall, the study findings showed that occupational exposure of coke oven workers increases the genetic damage and the PIG-A MF could be a potential biomarker for risk assessment of carcinogen exposure.


Subject(s)
Coke , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Biomarkers , Coke/toxicity , DNA Damage , Mutagens/toxicity , Mutation , Occupational Exposure/adverse effects , Polycyclic Aromatic Hydrocarbons/toxicity , Pyrenes/toxicity
4.
Environ Pollut ; 330: 121765, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37142205

ABSTRACT

Based on previous exposure studies, benzene (BZ) has been classified as a human carcinogen and occupational exposure limit (OELs) for BZ has been set to be about 1 ppm around the world. However, health hazards have still been reported with exposure below the OEL. Thus, the OEL needs to be updated to reduce health risk. The overall aim of our study was therefore to generate new OEL for BZ via a benchmark dose (BMD) approach and based on quantitative and multi-endpoint genotoxicity assessments. Genotoxicities were determined using the novel human PIG-A gene mutation assay, the micronucleus (MN) test and the COMET assay in benzene-exposed workers. Among the 104 workers with below current OELs, they exhibited significantly higher PIG-A mutant frequencies (MFs) (15.96 ± 14.41 × 10-6) and MN frequencies (11.55 ± 6.83‰) than those among the controls (PIG-A MFs: 5.46 ± 4.56 × 10-6, MN frequencies: 4.51 ± 1.58 ‰), but no difference in the COMET assay. A significant association was also observed between BZ exposure doses and PIG-A MFs and MN frequencies (P < 0.001). Our results indicate that health hazards were induced among workers with below OEL exposures. Based on results from the PIG-A and MN assays, the lower confidence limit of the BMD (BMDL) were calculated to be 8.71 mg/m3-year and 0.44 mg/m3-year, respectively. Based on these calculations, the OEL for BZ was determined to be lower than 0.07 ppm. This value can be considered by regulatory agencies to set new exposure limits and to better protect workers.


Subject(s)
Benzene , Occupational Exposure , Humans , Benzene/toxicity , Benchmarking , Occupational Exposure/analysis , DNA Damage , Micronucleus Tests , China
5.
Environ Sci Technol ; 57(20): 7709-7720, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37154621

ABSTRACT

To achieve carbon neutrality (i.e., net zero carbon emissions) by 2060, China must make significant changes in its socioeconomic systems, including appropriately allocating emissions responsibility. Traditional methods of delineating responsibilities (such as production-based and consumption-based accounting) can lead to double counting when applied simultaneously and therefore difficulty in determining responsibilities of different agents. An alternative approach based on economic welfare gains from environmental externalities has been refined, ensuring that the responsibilities of consumers and producers add up to the total emissions. The application of this approach to 48 countries and 31 Chinese provinces reveals that regions with less elastic supply and demand, such as Hebei in China and Russia, have higher responsibilities. Furthermore, larger externalities associated with unitary product value shift the burden of obligations from producers to consumers. Regions with high levels of wealth and carbon-intensive imports, such as Zhejiang and Guangdong in China, as well as the United States, typically have higher consumer-based accounting (CBA) emissions than production-based accounting (PBA) emissions and, as a result, redistributed responsibilities between PBA and CBA emissions. The new distribution results vary significantly from PBA or CBA emissions, indicating opportunities for more comprehensive and accessible policy goals.


Subject(s)
Carbon Dioxide , Carbon , Carbon Dioxide/analysis , China , Russia , Economic Development
6.
Article in English | MEDLINE | ID: mdl-37003652

ABSTRACT

The fat mass and obesity-associated protein FTO is an "eraser" of N6-methyladenosine, the most abundant mRNA modification. FTO plays important roles in tumorigenesis. However, its activities have not been fully elucidated and its possible involvement in DNA damage - the early driving event in tumorigenesis - remains poorly characterized. Here, we have investigated the role of FTO in the DNA damage response (DDR) and its underlying mechanisms. We demonstrate that FTO responds to various DNA damage stimuli. FTO is overexpressed in mice following exposure to the promutagens aristolochic acid I and benzo[a]pyrene. Knockout of the FTO gene in TK6 cells, via CRISPR/Cas9, increased genotoxicity induced by DNA damage stimuli (micronucleus and TK mutation assays). Cisplatin- and diepoxybutane-induced micronucleus frequencies and methyl methanesulfonate- and azathioprine-induced TK mutant frequencies were also higher in FTO KO cells. We investigated the potential roles of FTO in DDR. RNA sequencing and enrichment analysis revealed that FTO deletion disrupted the p38 MAPK pathway and inhibited the activation of nucleotide excision repair and cell-cycle-related pathways following cisplatin (DNA intrastrand cross-links) treatment. These effects were confirmed by western blotting and qRT-PCR. FTO deletion impaired cell-cycle arrest at the G2/M phase following cisplatin and diepoxybutane treatment (flow cytometry analysis). Our findings demonstrated that FTO is involved in several aspects of DDR, acting, at least in part, by impairing cell cycle progression.


Subject(s)
Cisplatin , DNA Damage , Mice , Animals , Cisplatin/toxicity , Mice, Knockout , Cell Division , Carcinogenesis , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
7.
Article in English | MEDLINE | ID: mdl-36868699

ABSTRACT

Environmental pollutants, such as quinoline (QN) and 4-methylquinoline (4-MeQ), may be genotoxic and carcinogenic. Earlier studies, including in vitro genotoxicity tests, indicated that 4-MeQ is more mutagenic than QN. However, we hypothesized that the methyl group of 4-MeQ favors detoxication over bioactivation, and this factor may be overlooked in in vitro tests that do not incorporate supplementation with cofactors for enzymes that catalyze conjugation reactions. We used human induced hepatocyte cells (hiHeps), which express such enzymes, and compared the genotoxicity of 4-MeQ and QN. We also carried out an in vivo micronucleus (MN) test in rat liver, since 4-MeQ is not genotoxic in rodent bone marrow. In the Ames test and the Tk gene mutation assay, with rat S9 activation, 4-MeQ was more mutagenic than QN. However, QN induced significantly higher MN frequencies in hiHeps and rat liver than did 4-MeQ. Furthermore, QN upregulated genotoxicity marker genes much more than did 4-MeQ. We also investigated the roles of two important detoxication enzymes, UDP-glucuronosyltransferases (UGTs) and cytosolic sulfotransferases (SULTs). When hiHeps were preincubated with hesperetin (UGT inhibitor) and 2,6-dichloro-4-nitrophenol (SULT inhibitor), MN frequencies were elevated approximately 1.5-fold for 4-MeQ, whereas no significant effects were seen for QN. This study shows that QN is more genotoxic than 4-MeQ, when the roles of SULTs and UGTs in detoxication are considered and our results may improve understanding the structure-activity relationships of quinoline derivatives.


Subject(s)
Mutagens , Quinolines , Animals , Humans , Rats , Cell Nucleus , Glucuronosyltransferase , Liver , Quinolines/toxicity
8.
J Nat Med ; 77(2): 251-261, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36525161

ABSTRACT

Aristolochic acid (AA)-containing herbs have been prescribed for thousands of years as anti-inflammatory drugs, despite the active pharmaceutical ingredients remaining unclear. However, exposure to AAI and AAII has been proven to be a significant risk factor for severe nephropathy and carcinogenicity. AAIVa, an analogue abundant in AA-containing herbs, showed neither carcinogenicity nor nephrotoxicity in our study and other reports, implying that the pharmacological effects of AAIVa on inflammation are worth studying. Herein, we employed RAW 264.7 cells, the ear edema mouse model, and the lipopolysaccharide (LPS)-induced systematic inflammation model in TNF-IRES-Luc mice (tracking TNFα luciferase activities in real-time) to evaluate the anti-inframammary effect of AAIVa. Our results showed that AAIVa could decrease pro-inflammatory cytokines (TNFα and IL-6) production in LPS-stimulated RAW 264.7 cells, indicating its anti-inflammatory effects in vitro. Furthermore, the application of AAIVa (400 and 600 µg/ear) could significantly inhibit phorbol 12-myristate 13-acetate-induced ear edema, suggesting its topical anti-inflammatory activity in vivo. Moreover, LPS-stimulated TNF-IRES-Luc mice were used to investigate the onset and duration of AAIVa on systematic inflammation. A single dosage of AAIVa (100 mg/kg, i.g.) could suppress LPS-triggered inflammation, by decreasing luciferase activities of TNFα at 3 h in TNF-IRES-Luc mice. In addition, the online pharmacological databases predicted that AAIVa might target the regulation of T cell activation-related protein (ADA, ADORA2A, ERBB2) to exhibit anti-inflammatory effect. In conclusion, we demonstrated that AAIVa had anti-inflammatory effect for the first time; our findings are constructive for further studies on pharmacological mechanism of AAIVa.


Subject(s)
Lipopolysaccharides , Tumor Necrosis Factor-alpha , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Luciferases/metabolism , Luciferases/pharmacology , Luciferases/therapeutic use
9.
Ecotoxicol Environ Saf ; 245: 114089, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36126550

ABSTRACT

Caenorhabditis elegans (C. elegans), an established model organism, has been widely used in environmental toxicology research. However, most of the current toxicity testing methods based on worms are time-consuming. In this study we aimed to develop an automated and highly-integrated platform for high-throughput and in situ toxicity testing. Considering the superiority of C. elegans as a neurotoxicological model, this platform mainly evaluates general toxicology and neurotoxicology endpoints, which are usually induced by metals and pesticides, the major environmental contaminants. Microplates were used as a worm culturing system, which have good compatibility with any commercial microplate applicable instruments. We developed a microfluidic-based module for worm dispensing, and an image acquisition/analysis module for monitoring worms and detecting toxicity endpoints in bright filed. These were collectively incorporated with a commercial pipetting workstation for automated food/drug delivery and a high-content analysis system for fluorescence detection. The integrated platform achieved an efficient on-demand worm dispensing, long-term maintenance, regular monitoring and imaging, survival assay and behavioral analyses, and visualized gene reporter assay. Moreover, "Lab on Web" was achieved by connecting the platform to the web for remote operation, worm monitoring, and phenotype calculation. To demonstrate the ability of the platform for automated toxicity testing assays; worms were treated with cadmium and longevity, neurotoxicity, developmental toxicity and gst-4 expression were evaluated. We determined its feasibility and proposed the potential application in high-throughput toxicity screening for environmental risk assessment in the nearest future.


Subject(s)
Caenorhabditis elegans , Pesticides , Animals , Cadmium/metabolism , Cadmium/toxicity , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , High-Throughput Screening Assays/methods , Pesticides/metabolism , Pesticides/toxicity , Phenotype
10.
Biomolecules ; 12(9)2022 09 04.
Article in English | MEDLINE | ID: mdl-36139076

ABSTRACT

Bilirubin (BR) is a tetrapyrrolic compound stemming from heme catabolism with diverse physiological functions. It can be oxidized by H2O2 to form several degradation products, some of which have been detected in vivo and may contribute to the pathogenesis of certain diseases. However, the oxidative degradation of BR is complex and the conditions that BR degradation occurs pathophysiologically remain obscure. Neutrophils are known to generate large amounts of reactive oxygen species, including H2O2, upon activation and they are mobilized to inflammatory sites; therefore, we hypothesized that activated neutrophils could cause BR degradation, which could occur at inflammatory sites. In the present study, we investigated BR degradation by H2O2 and identified hematinic acid (BHP1) and a new product BHP2, whose structure was characterized as 2,5-diformyl-4-methyl-1H-pyrrole-3-propanoic acid. An LC-MS/MS method for the quantitation of the two compounds was then established. Using the LC-MS/MS method, we observed the concentration-dependent formation of BHP1 and BHP2 in mouse neutrophils incubated with 10 and 30 µM of BR with the yields being 16 ± 3.2 and 31 ± 5.9 pmol/106 cells for BHP1, and 25 ± 4.4 and 71 ± 26 pmol/106 cells for BHP2, respectively. After adding phorbol 12-myristate 13-acetate, a neutrophil agonist, to 30 µM of BR-treated cells, the BHP1 yield increased to 43 ± 6.6 pmol/106 cells, whereas the BHP2 one decreased to 47 ± 9.2 pmol/106 cells. The two products were also detected in hemorrhagic skins of mice with dermal inflammation and hemorrhage at levels of 4.5 ± 1.9 and 0.18 ± 0.10 nmol/g tissue, respectively, which were significantly higher than those in the non-hemorrhagic skins. BHP2 was neurotoxic starting at 0.10 µM but BHP1 was not, as assessed using Caenorhabditis elegans as the animal model. Neutrophil-mediated BR degradation may be a universally pathophysiological process in inflammation and can be particularly important under pathological conditions concerning hemorrhage.


Subject(s)
Neutrophils , Propionates , Acetates/metabolism , Animals , Bilirubin , Chromatography, Liquid , Heme/metabolism , Hydrogen Peroxide/metabolism , Inflammation/metabolism , Mice , Myristates/metabolism , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry , Tetradecanoylphorbol Acetate/pharmacology
11.
Am J Transl Res ; 14(3): 1991-2001, 2022.
Article in English | MEDLINE | ID: mdl-35422897

ABSTRACT

Breast cancer is common cancer type with high mortality. There are still inperfections in the traditional diagnosis and treatment methods for cancer. Photoacoustic imaging combines the advantages of high specificity and deep tissue penetration and is especially suitable for early cancer detection and treatment monitoring. With its specificity and noninvasiveness; photothermal therapy has become one of the best representative treatment methods. Indocyanine green (ICG) is a near-infrared imaging reagent approved by the FDA for clinical application, with a potential application for photothermal therapy. ICG has low targeting specificity. Through the combination of EB and ICG, the timeliness of ICG circulation in vivo is improved, and the tumor targeting of ICG-E is improved by using RGD. ICG-ER, an integrated optical probe for diagnosis and treatment, was constructed, and high uptake of ICG-ER by 4T1 cells was observed by flow cytometry and confocal laser scanning microscopy (CLSM). ICG-ER photoacoustic signal intensity is concentration-dependent. In vivo photoacoustic imaging showed that the ICG-ER concentration time in the tumor site was long and reached a peak at 42 hours. Under laser irradiation, the temperature of the tumor site in mice that were injected with ICG-ER reached 56°C. After photothermal treatment, the tumor tissue in the mice showed obvious necrosis and no tumor recurrence, proving that ICG-ER has a good photothermal effect. Based on the above results, ICG-ER can be used in breast cancer optical imaging and photothermal therapy, which is expected to provide new ideas for breast cancer clinical diagnosis and treatment.

12.
Toxicol Res (Camb) ; 10(6): 1153-1161, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34956618

ABSTRACT

Triclosan (TCS) is widely used and it bioaccumulates in humans. We found that TCS induced DNA damage in TK6 cell in our previous work. Herein, we performed a pilot assay of the TK6 cell/TK gene (TK+/-) mutation assay without metabolic activation for 24 h and found that TCS significantly induced mutation frequency. We further investigated the dose-response toxicity and genotoxicity of TCS. We combined the newly developed Pig-a gene mutation assay with bone marrow micronucleus (MN) test in a 19-day short-term study. ICR mice were administered orally with TCS at six dose levels from 0 to1000 mg/kg/day. We quantitatively assessed the dose-response relationships for the Pig-a assay, MN test, and organ coefficient data for possible points of departure (PoDs) by estimating the benchmark dose using PROAST software. We did not observe elevated Pig-a mutant frequency or MN frequency in TCS-treated mice. But a dose-dependent and statistically significant increase in liver organ coefficient data was observed. The PoD and acceptable daily intake based on organ toxicity were further developed and no greater than 1.82 and 0.00182 mg/kg/day, respectively, indicating that the toxicity of TCS may has been underestimated in previous studies and greater attention should be paid to low-level TCS exposure.

13.
Genes Environ ; 43(1): 54, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34879859

ABSTRACT

BACKGROUND: The PIG-A gene mutation assay is a valuable tool for measuring in vivo gene mutations in blood cells. The human PIG-A assay, used as a potential genotoxicity biomarker, is minimally invasive, sensitive, and cost-efficient; however, the relationship between carcinogen exposure and PIG-A mutations is not well understood. METHODS: We investigated the genotoxic effect of red blood cells using PIG-A assay and lymphocyte cytokinesis-block micronucleus test in barbecue restaurant workers (N = 70) exposed to polycyclic aromatic hydrocarbons (PAHs) and self-identified healthy control subjects (N = 56). Urinary PAH metabolites were measured to evaluate internal exposure levels. RESULTS: Multivariate Poisson regression showed that the PAH-exposed workers exhibited significantly higher PIG-A mutant frequency (MF) (8.04 ± 6.81 × 10- 6) than did the controls (5.56 ± 5.26 × 10- 6) (RR = 0.707, 95% CI: 0.615-0.812, P < 0.001). These results indicate that PAH exposure is a risk factor for elevated PIG-A MF. The frequencies of micronuclei (MN) and nuclear buds (NBUD) in the PAH-exposed workers (MN: 3.06 ± 2.07 ‰, NBUD: 1.38 ± 1.02 ‰) were also significantly higher than in the controls (MN: 1.46 ± 0.64 ‰, P < 0.001; NBUD: 0.70 ± 0.60 ‰, P < 0.001). Additionally, PIG-A MFs showed better associations with several urinary hydroxylated PAH metabolites (P2-OH-Flu = 0.032, r2-OH-Flu = 0. 268; P2-OH-Phe = 0.022, r2-OH-Phe = 0.286; P3-OH-Phe = 0.0312, r3-OH-Phe = 0.270; P4-OH-Phe = 0.018, r4-OH-Phe = 0.296), while the increase in MN, NPB, and NBUD frequencies was not associated with any OH-PAH metabolites; and high-PAH-exposed workers showed the highest PIG-A MFs. Furthermore, there was a significant association between PIG-A MF and PAH exposure levels (Chi-square test for trend, P = 0.006). CONCLUSIONS: Our results indicate that an increase in PIG-A MF in barbecue workers could reflect the response to PAH exposure, providing evidence of its potential as a genotoxicity biomarker in human risk assessment.

14.
Arch Toxicol ; 95(8): 2839-2850, 2021 08.
Article in English | MEDLINE | ID: mdl-34223934

ABSTRACT

Aristolochic acids (AAs) are a family of natural compounds with AA I and AA II being known carcinogens, whose bioactivation causes DNA adducts formation. However, other congeners have rarely been investigated. This study aimed to investigate genotoxicity of AA IVa, which differs from AA I by a hydroxyl group, abundant in Aristolochiaceae plants. AA IVa reacted with 2'-deoxyadenosine (dA) and 2'-deoxyguanosine (dG) to form three dA and five dG adducts as identified by high-resolution mass spectrometry, among which two dA and three dG adducts were detected in reactions of AA IVa with calf thymus DNA (CT DNA). However, no DNA adducts were detected in the kidney, liver, and forestomach of orally dosed mice at 40 mg/kg/day for 2 days, and bone marrow micronucleus assay also yielded negative results. Pharmacokinetic analyses of metabolites in plasma indicated that AA IVa was mainly O-demethylated to produce a metabolite with two hydroxyl groups, probably facilitating its excretion. Meanwhile, no reduced metabolites were detected. The competitive reaction of AA I and AA IVa with CT DNA, with adducts levels varying with pH of reaction revealed that AA IVa was significantly less reactive than AA I, probably by hydroxyl deprotonation of AA IVa, which was explained by theoretical calculations for reaction barriers, energy levels of the molecular orbits, and charges at the reaction sites. In brief, although it could form DNA adducts in vitro, AA IVa was non-genotoxic in vivo, which was attributed to its low reactivity and biotransformation into an easily excreted metabolite rather than bioactivation.


Subject(s)
Aristolochic Acids/toxicity , DNA Adducts/drug effects , DNA Damage/drug effects , DNA/drug effects , Animals , Aristolochic Acids/administration & dosage , Aristolochic Acids/chemistry , Carcinogens/administration & dosage , Carcinogens/chemistry , Carcinogens/toxicity , Hydrogen-Ion Concentration , Male , Mice , Mice, Inbred C57BL , Micronucleus Tests , Mutagenicity Tests
15.
Biomolecules ; 11(6)2021 05 31.
Article in English | MEDLINE | ID: mdl-34072909

ABSTRACT

A representative congener of polybrominated diphenyl ethers in the environment, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), is associated with male reproductive toxicity, yet the underlying mechanisms remain largely unclear. In this study, mice were administered environmentally relevant concentrations of BDE-47 for six weeks. Histopathological observations showed that BDE-47 induced inflammatory reactions and damaged the testes. By conducting an integrated proteomic and metabolomic analysis coupled with a bioinformatic analysis using ingenuity pathway analysis (IPA) methods, we found that BDE-47 mainly affected the molecules involved in free radical scavenging, cell death and survival, neurological disease, and inflammatory response. IPA canonical pathways showed inflammatory and apoptosis pathways, including hepatic fibrosis/hepatic stellate cell activation, the GP6 signaling pathway, tight junction signaling, acute phase response signaling, LXR/RXR activation, unfolded protein response, and FXR/RXR activation, which are related to male reproductive toxicity. Key transcriptional regulator networks were activated via a focus on upstream regulator analysis. The expression of MYC and Clu as the core transcriptional factor and targeted protein, respectively, was verified. It is further proposed that MYC may contribute to the etiology of male reproductive toxicity. These findings will improve our understanding of the mechanisms responsible for BDE-47-induced male reproductive toxicity, which may promote the discovery of useful biomarkers indicative of BDE-47 exposure.


Subject(s)
Halogenated Diphenyl Ethers/toxicity , Metabolomics , Proteomics , Reproduction/drug effects , Signal Transduction/drug effects , Testis/metabolism , Animals , Male , Mice , Reactive Oxygen Species/metabolism , Testis/pathology
16.
Mutagenesis ; 36(1): 87-94, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33367723

ABSTRACT

As the carcinogenic risk of herbs containing aristolochic acids (AAs) is a global health issue, quantitative evaluation of toxicity is needed for the regulatory decision-making and risk assessment of AAs. In this study, we selected AA I (AAI), the most abundant and representative compound in AAs, to treat transgenic gpt delta mice at six gradient doses ranging from 0.125 to 4 mg/kg/day for 28 days. AAI-DNA adduct frequencies and gpt gene mutation frequencies (MFs) in the kidney, as well as Pig-a gene MFs and micronucleated reticulocytes (MN-RETs) frequencies in peripheral blood, were monitored. The dose-response (DR) relationship data for these in vivo genotoxicity endpoints were quantitatively evaluated using an advanced benchmark dose (BMD) approach with different critical effect sizes (CESs; i.e., BMD5, BMD10, BMD50 and BMD100). The results showed that the AAI-DNA adduct frequencies, gpt MFs and the MN-RETs presented good DR relationship to the administrated doses, and the corresponding BMDL100 (the lower 90% confidence interval of the BMD100) values were 0.017, 0.509 and 3.9 mg/kg/day, respectively. No positive responses were observed in the Pig-a MFs due to bone marrow suppression caused by AAI. Overall, we quantitatively evaluated the genotoxicity of AAI at low doses for multiple endpoints for the first time. Comparisons of BMD100 values across different endpoints provide a basis for the risk assessment and regulatory decision-making of AAs and are also valuable for understanding the genotoxicity mechanism of AAs.


Subject(s)
Aristolochic Acids/toxicity , DNA Adducts , DNA Damage , Escherichia coli Proteins/metabolism , Mutation Rate , Pentosyltransferases/metabolism , Animals , Benchmarking , Escherichia coli Proteins/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Micronucleus Tests , Mutagenicity Tests , Mutagens/toxicity , Pentosyltransferases/genetics
17.
Tumori ; 107(4): 282-291, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32734832

ABSTRACT

Tumor immunotherapy has become one of the main treatments for tumors. Inhibition of the pathways involving programmed cell death receptor 1 (PD-1) and its ligand (PD-L1) has gained favor in anticancer therapy, and can effectively prolong the survival of patients with cancer; however, numerous patients have PD-1/PD-L1 inhibitor primary resistance. The efficacy of anti-PD-1/PD-L1 therapy is related to the host tumor microenvironment. Radiation therapy can promote the body's antitumor immunity, change the tumor microenvironment, and synergize with anti-PD-1/PD-L1 treatment. Preclinical and clinical trials have shown that PD-1/PD-L1 inhibitor combined with radiotherapy has a significant effect. We review the synergistic antitumor mechanism and clinical trials of radiotherapy combined with anti-PD-1/PD-L1 therapy.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Chemoradiotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Radiotherapy/methods , Tumor Microenvironment/immunology , Animals , Humans , Immunotherapy , Neoplasms/immunology , Neoplasms/pathology
18.
Arch Toxicol ; 94(10): 3475-3485, 2020 10.
Article in English | MEDLINE | ID: mdl-32737516

ABSTRACT

To improve the accuracy and the cost-efficiency of next-generation sequencing in ultralow-frequency mutation detection, we developed the Paired-End and Complementary Consensus Sequencing (PECC-Seq), a PCR-free duplex consensus sequencing approach. PECC-Seq employed shear points as endogenous barcodes to identify consensus sequences from the overlap in the shortened, complementary DNA strand-derived paired-end reads for sequencing error correction. With the high accuracy of PECC-Seq, we identified the characteristic base substitution errors introduced by the end-repair process of mechanical fragmentation-based library preparations, which were prominent at the terminal 7 bp of the library fragments in the 5'-NpCpA-3' and 5'-NpCpT-3' trinucleotide context. As demonstrated at the human genome scale (TK6 cells), after removing these potential end-repair artifacts from the terminal 7 bp, PECC-Seq could reduce the sequencing error frequency to mid-10-7 with a relatively low sequencing depth. For TA base pairs, the background error rate could be suppressed to mid-10-8. In mutagen-treated (6 µg/mL methyl methanesulfonate or 12 µg/mL N-nitroso-N-ethylurea) TK6, increases in mutagen treatment-related mutant frequencies could be detected, indicating the potential of PECC-Seq in detecting genome-wide ultra-rare mutations. In addition, our finding on the patterns of end-repair artifacts may provide new insights into further reducing technical errors not only for PECC-Seq, but also for other next-generation sequencing techniques.


Subject(s)
DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Mutation Rate , Cell Line , Consensus , Genome, Human , Humans , Mutation , Polymerase Chain Reaction , Sensitivity and Specificity , Sequence Analysis, DNA
19.
Data Brief ; 30: 105496, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32368578

ABSTRACT

The structural conformations of phospholipids and cholesterol in phase-separated lipid domains were determined by surface area, transverse density profile, and lipid acyl chain orientational parameter calculations. Binding kinetics and characterization of membrane-bound states of beta-amyloid fibrils of various sizes (dimer to pentamer), on those lipid domains, were determined using protein residue orientational parameter and fibril-residue-lipid minimum distance analysis methods. The energy of binding and characterization of annular lipid shells surrounding the surface-bound amyloid fibrils were also determined. The calculations described above support the article "Coarse-Grained MD simulations Reveal Diverse Membrane-Bound Conformational States of Beta-Amyloid Fibrils in the Liquid-ordered and Liquid-disordered Regions of Phase-Separated Lipid Rafts Containing Glycolipid, Cholesterol and Oxidized Cholesterol (Cheng et al., 2020 [1])". The reported data is valuable for the future design and analysis of any protein fibrils binding to phase-separated lipid domains in model multi-component lipids membranes using either atomistic or coarse-grained molecular dynamics simulations. Additionally, this data can guide or validate future single-molecule experiments on fibril/membrane interactions in model or cell membranes.

20.
Environ Mol Mutagen ; 61(6): 611-621, 2020 07.
Article in English | MEDLINE | ID: mdl-32285465

ABSTRACT

The rodent Pig-a gene mutation assay has demonstrated remarkable sensitivity in identifying in vivo mutagens, while much less is known about the value of the human PIG-A assay for risk assessment. To obtain more evidence of its potential as a predictive biomarker for carcinogen exposure, we investigated PIG-A mutant frequencies (MFs), along with performing the Comet assay and micronucleus (MN) test, in 267 workers occupationally exposed to lead. Multivariate Poisson regression showed that total red blood cell PIG-A MFs were significantly higher in lead-exposed workers (10.90 ± 10.7 × 10-6 ) than in a general population that we studied previously (5.25 ± 3.6 × 10-6 ) (p < .0001). In contrast, there was no increase in lymphocyte MN frequency or in DNA damage as measured by percentage comet tail intensity in whole blood cells. Current year worker blood lead levels (BLL), an exposure biomarker, were elevated (232.6 ± 104.6 µg/L, median: 225.4 µg/L); a cumulative blood lead index (CBLI) also was calculated based on a combination of current and historical worker BLL data. Chi-square testing indicated that PIG-A MFs were significantly related to CBLI (p = .0249), but independent of current year BLL (p = .4276). However, % comet tail intensity and MN frequencies were better associated with current year BLL than CBLI. This study indicates that the PIG-A assay could serve as biomarker to detect the genotoxic effects of lead exposure and demonstrates that a battery of genotoxicity biomarkers having mechanistic complementarity may be useful for comprehensively monitoring human carcinogenic risk.


Subject(s)
Lead/toxicity , Membrane Proteins/genetics , Mutagens/toxicity , Occupational Exposure/adverse effects , Adult , Comet Assay/methods , DNA Damage/drug effects , Erythrocytes/drug effects , Erythrocytes/metabolism , Female , Humans , Male , Micronucleus Tests/methods , Middle Aged , Mutation/drug effects , Mutation Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...