Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 46(3): 71, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366045

ABSTRACT

Inorganic arsenic (iAs) is a carcinogen. Vegetables such as water spinach (Ipomoea aquatica Forssk.) and amaranth (Amaranthus mangostanus L.) are recognized as high-risk sources of iAs exposure because they can accumulate significant amounts of iAs and are widely consumed. To ensure safe cultivation conditions, this study aimed to establish prediction models for iAs concentration in the edible parts of water spinach and amaranth based on soil properties. Subsequently, health risk assessments associated with iAs exposure through the consumption of these vegetables were conducted using prediction models. Soil samples were collected from agricultural fields in Taiwan and used in the pot experiments. Pearson correlation and partial correlation analyses were used to explore the relationship between soil properties, including total As, clay, organic matter, iron oxides and available phosphates, and iAs concentration in edible parts of water spinach and amaranth. Prediction models based on soil properties were developed by stepwise multiple linear regression. Health risk assessments were conducted using the Monte Carlo algorithm. The results indicate that total As and organic matter contents in soil were major predictors of iAs concentration in water spinach, whereas those in amaranth were total As and clay contents. Therefore, higher health risks for consuming water spinach and amaranth are associated with higher levels of organic matter and clay contents in soil, respectively, and these are crucial factors to consider to ensure food safety. This study suggested that As-elevated soils enriched with organic matter and clay contents should be avoided when growing water spinach and amaranth, respectively.


Subject(s)
Amaranthus , Arsenic , Soil Pollutants , Vegetables , Soil , Arsenic/toxicity , Arsenic/analysis , Clay , Food Safety , Soil Pollutants/toxicity , Soil Pollutants/analysis
2.
Plant Divers ; 43(6): 472-479, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35024516

ABSTRACT

Rhododendron meddianum is a critically endangered species with important ornamental value and is also a plant species with extremely small populations. In this study, we used double digest restriction-site-associated DNA sequencing (ddRAD) technology to assess the genetic diversity, genetic structure and demographic history of the three extant populations of R. meddianum. Analysis of SNPs indicated that R. meddianum populations have a high genetic diversity (π = 0.0772 ± 0.0024, H E  = 0.0742 ± 0.002). Both F ST values (0.1582-0.2388) and AMOVA showed a moderate genetic differentiation among the R. meddianum populations. Meanwhile, STRUCTURE, PCoA and NJ trees indicated that the R. meddianum samples were clustered into three distinct genetic groups. Using the stairway plot, we found that R. meddianum underwent a population bottleneck about 70,000 years ago. Furthermore, demographic models of R. meddianum and its relative, Rhododendron cyanocarpum, revealed that these species diverged about 3.05 (2.21-5.03) million years ago. This divergence may have been caused by environmental changes that occurred after the late Pliocene, e.g., the Asian winter monsoon intensified, leading to a drier climate. Based on these findings, we recommend that R. meddianum be conserved through in situ, ex situ approaches and that its seeds be collected for germplasm.

SELECTION OF CITATIONS
SEARCH DETAIL
...