Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 12(7)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34357316

ABSTRACT

We determined 15 complete and two nearly complete mitogenomes of Heptageniidae belonging to three subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae) and six genera (Afronurus, Epeorus, Leucrocuta, Maccaffertium, Stenacron, and Stenonema). Species of Rhithrogeninae and Ecdyonurinae had the same gene rearrangement of CR-I-M-Q-M-ND2, whereas a novel gene rearrangement of CR-I-M-Q-NCR-ND2 was found in Heptageniinae. Non-coding regions (NCRs) of 25-47 bp located between trnA and trnR were observed in all mayflies of Heptageniidae, which may be a synapomorphy for Heptageniidae. Both the BI and ML phylogenetic analyses supported the monophyly of Heptageniidae and its subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae). The phylogenetic results combined with gene rearrangements and NCR locations confirmed the relationship of the subfamilies as (Heptageniinae + (Rhithrogeninae + Ecdyonurinae)). To assess the effects of low-temperature stress on Heptageniidae species from Ottawa, Canada, we found 27 positive selection sites in eight protein-coding genes (PCGs) using the branch-site model. The selection pressure analyses suggested that mitochondrial PCGs underwent positive selection to meet the energy requirements under low-temperature stress.

2.
Gene ; 800: 145833, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34274477

ABSTRACT

As one of the most common benthic invertebrates in freshwater, mayflies are very sensitive to changes in water quality and have high requirements for the water environment to allow their nymphs to successfully live and grow. Neonicotinoids, such as imidacloprid, can enter fresh water and pollute the aquatic environment. The present study had two goals: (1) investigate imidacloprid effects on mayfly larvae Choroterpes (Euthralus) yixingensis, and (2) contribute to the phylogenetic status of Ephemeroptera that has always been controversial. Nymphs were collected from Jinhua, China and exposed to different concentrations imidacloprid (5, 10, 20, and 40 µg/L) in the laboratory. Survival of C. yixingensis nymphs decreased as a function of time and imidacloprid concentration with only ~ 55% survival after 72 h exposure to 40 µg/L imidacloprid. After culture under 40 µg/L imidacloprid for 24 h, the steady state transcript levels of mitochondrial COX3, ND4 and ND4L genes were reduced to just 0.07 ± 0.11, 0.30 ± 0.16, and 0.28 ± 0.13 as compared with respective control values (P < 0.01). Steady state transcript levels of ND4 and ND4L were also significantly reduced in a dose-dependent manner (P < 0.05), suggesting that the steady state transcript pattern of these genes in mayfly nymphs can change in response to different levels of environmental contamination. Hence, the mitochondrial protein-coding genes of mayflies could potentially be developed as biomarkers for water ecotoxicity monitoring in the future. In addition, we used the mitochondrial genome sequence of C. yixingensis for an assessment of the phylogenetic tree of Ephemeroptera. The monophyly of Leptophlebiidae was supported and showed that Leptophlebiidae was a sister group to the clade (Baetidae + Caenidae).


Subject(s)
Ephemeroptera/genetics , Gene Expression/drug effects , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Animals , Ephemeroptera/drug effects , Genome, Insect , Genome, Mitochondrial , Insect Proteins/genetics , Insecticides/pharmacology , Nymph/drug effects , Nymph/genetics , Phylogeny
3.
Mitochondrial DNA B Resour ; 6(7): 1944-1946, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34179475

ABSTRACT

The first complete mitochondrial genome of Euroleon coreanus (Okamoto, 1926) was 15,797 bp in length, and contained 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and the control region. Compared to the classic insect mitochondrial genome, E. coreanus showed a gene rearrangement of ND2-C-W-Y-COX1. The overall AT content of the mitochondrial genome was 75.5%. The monophyly of Ascalaphidae, Myrmeleontidae, Nemopteridae, Nymphidae, and Psychopsidae was supported in both BI and ML trees. And E. coreanus was a sister clade to the clade of genus Myrmeleon.

4.
Int J Biol Macromol ; 185: 403-411, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34166699

ABSTRACT

Gene rearrangements have been found in several mitochondrial genomes of Mantodea, located in the gene blocks CR-I-Q-M-ND2, COX1-K-D-ATP8 and ND3-A-R-N-S-E-F-ND5. We have sequenced one mitogenome of Amelidae (Yersinia mexicana) and six mitogenomes of Mantidae to discuss the mitochondrial gene rearrangement and the phylogenetic relationship within Mantidae. These mitogenomes showed rearrangements of tRNA genes except for Asiadodis yunnanensis and Hierodula zhangi. These novel gene rearrangements of Mantidae were primarily concentrated in the region of CR-I-Q-M-ND2, including gene translocation, duplication and pseudogenization. For the occurrences of these rearrangements, the tandem duplication-random loss (TDRL) model and slipped-strand mispairing model were suitable to explain. Large non-coding regions (LNCRs) located in the region of CR-I-Q-M-ND2 were detected in most Mantidae species, whereas some LNCRs had high similarity to the control region (CR). Both BI and ML phylogenetic analyses supported the monophyly of Mantidae and the paraphyly of Mantinae. The phylogenetic results with the gene order and the location of NCRs acted as forceful evidence that specific gene rearrangements and special LNCRs may be synapomorphies for several groups of mantises.


Subject(s)
Gene Rearrangement , Mantodea/genetics , Mitochondria/genetics , RNA, Transfer/genetics , Animals , Evolution, Molecular , Gene Duplication , Gene Order , Genome, Mitochondrial , Nucleic Acid Conformation , Phylogeny , Pseudogenes , RNA, Plant/genetics , RNA, Transfer/chemistry , Sequence Analysis, DNA , Translocation, Genetic
5.
Insects ; 12(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069253

ABSTRACT

We determined the mitochondrial gene sequence of Monochamus alternatus and three other mitogenomes of Lamiinae (Insect: Coleoptera: Cerambycidae) belonging to three genera (Aulaconotus, Apriona and Paraglenea) to enrich the mitochondrial genome database of Lamiinae and further explore the phylogenetic relationships within the subfamily. Phylogenetic trees of the Lamiinae were built using the Bayesian inference (BI) and maximum likelihood (ML) methods and the monophyly of Monochamus, Anoplophora, and Batocera genera was supported. Anoplophora chinensis, An. glabripennis and Aristobia reticulator were closely related, suggesting they may also be potential vectors for the transmission of the pine wood pathogenic nematode (Bursaphelenchus xylophilus) in addition to M. alternatus, a well-known vector of pine wilt disease. There is a special symbiotic relationship between M. alternatus and Bursaphelenchus xylophilus. As the native sympatric sibling species of B. xylophilus, B. mucronatus also has a specific relationship that is often overlooked. The analysis of mitochondrial gene expression aimed to explore the effect of B. mucronatus on the energy metabolism of the respiratory chain of M. alternatus adults. Using RT-qPCR, we determined and analyzed the expression of eight mitochondrial protein-coding genes (COI, COII, COIII, ND1, ND4, ND5, ATP6, and Cty b) between M. alternatus infected by B. mucronatus and M. alternatus without the nematode. Expression of all the eight mitochondrial genes were up-regulated, particularly the ND4 and ND5 gene, which were up-regulated by 4-5-fold (p < 0.01). Since longicorn beetles have immune responses to nematodes, we believe that their relationship should not be viewed as symbiotic, but classed as parasitic.

SELECTION OF CITATIONS
SEARCH DETAIL
...