Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38598394

ABSTRACT

Interactive semantic segmentation pursues high-quality segmentation results at the cost of a small number of user clicks. It is attracting more and more research attention for its convenience in labeling semantic pixel-level data. Existing interactive segmentation methods often pursue higher interaction efficiency by mining the latent information of user clicks or exploring efficient interaction manners. However, these works neglect to explicitly exploit the semantic correlations between user corrections and model mispredictions, thus suffering from two flaws. First, similar prediction errors frequently occur in actual use, causing users to repeatedly correct them. Second, the interaction difficulty of different semantic classes varies across images, but existing models use monotonic parameters for all images which lack semantic pertinence. Therefore, in this article, we explore the semantic correlations existing in corrections and mispredictions by proposing a simple yet effective online learning solution to the above problems, named correction-misprediction correlation mining ( CM2 ). Specifically, we leverage the correction-misprediction similarities to design a confusion memory module (CMM) for automatic correction when similar prediction errors reappear. Furthermore, we measure the semantic interaction difficulty by counting the correction-misprediction pairs and design a challenge adaptive convolutional layer (CACL), which can adaptively switch different parameters according to interaction difficulties to better segment the challenging classes. Our method requires no extra training besides the online learning process and can effectively improve interaction efficiency. Our proposed CM2 achieves state-of-the-art results on three public semantic segmentation benchmarks.

2.
Article in English | MEDLINE | ID: mdl-30369445

ABSTRACT

Most existing algorithms for depth estimation from single monocular images need large quantities of metric groundtruth depths for supervised learning. We show that relative depth can be an informative cue for metric depth estimation and can be easily obtained from vast stereo videos. Acquiring metric depths from stereo videos is sometimes impracticable due to the absence of camera parameters. In this paper, we propose to improve the performance of metric depth estimation with relative depths collected from stereo movie videos using existing stereo matching algorithm.We introduce a new "Relative Depth in Stereo" (RDIS) dataset densely labelled with relative depths. We first pretrain a ResNet model on our RDIS dataset. Then we finetune the model on RGB-D datasets with metric ground-truth depths. During our finetuning, we formulate depth estimation as a classification task. This re-formulation scheme enables us to obtain the confidence of a depth prediction in the form of probability distribution. With this confidence, we propose an information gain loss to make use of the predictions that are close to ground-truth. We evaluate our approach on both indoor and outdoor benchmark RGB-D datasets and achieve state-of-the-art performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...