Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Chem ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38310395

ABSTRACT

BACKGROUND: Long-chain acyl-coenzyme A synthases (ACSLs) are responsible for the catalysis of fatty acids into their corresponding fatty acyl-CoAs. The dysregulation of ACSLs has been increasingly recognized in cancer patients. However, the function of ACSL6 in triple-negative breast cancer (TNBC) is still completely unknown. METHODS: In this study, immunohistochemistry was applied to detect ACSL6 protein expression using a TNBC tissue microarray. Additionally, the mRNA levels of ACSL6 in human normal tissues and pancancer tissues were analyzed using Genotype Tissue Expression (GTEx) datasets and The Cancer Genome Atlas (TCGA) database. The correlations between the levels of ACSL6 expression and clinical characteristics were analyzed. The survival analysis of ACSL6 in TNBC was carried out using the Kaplan‒Meier Plotter online tool. Associations of ACSL6 with immune infiltration analyses were conducted using the ESTIMATE, CIBERSORT, and TISIDB databases. The relationship between ACSL6 and sensitivity to drugs was analyzed from Genomics of Drug Sensitivity in Cancer (GDSC). RESULTS: The results indicated a significant increase in ACSL6 expression in TNBC tissues compared to adjacent normal tissues. However, high ACSL6 expression was significantly associated with favorable survival outcomes in TNBC patients. Enrichment analysis revealed that coexpressed genes of ACSL6 were significantly enriched in various immunity processes. ACSL6 was positively correlated with the infiltration of memory CD4 T cells, while a negative correlation was found between ACSL6 and M2 macrophages and resting dendritic cells. Further analysis revealed that high levels of ACSL6 correlated with increased survival outcomes in cancer patients who received immunotherapy. CONCLUSION: Altogether, the current findings highlight the potential value of ACSL6 as a diagnostic and prognostic marker in the treatment of TNBC.

2.
Nanomicro Lett ; 16(1): 13, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37955747

ABSTRACT

Organic electrode materials are promising for batteries. However, the reported organic electrodes are often facing the challenges of low specific capacity, low voltage, poor rate capability and vague charge storage mechanisms, etc. Isomers are good platform to investigate the charge storage mechanisms and enhance the performance of batteries, which, however, have not been focused in batteries. Herein, two isomers are reported for batteries. As a result, the isomer tetrathiafulvalene (TTF) could store two monovalent anions reversibly, deriving an average discharge voltage of 1.05 V and a specific capacity of 220 mAh g-1 at a current density of 2 C. On the other hand, the other isomer tetrathianaphthalene could only reversibly store one monovalent anion and upon further oxidation, it would undergo an irreversible solid-state molecular rearrangement to TTF. The molecular rearrangement was confirmed by electrochemical performances, X-ray diffraction patterns, nuclear magnetic resonance spectra, and 1H detected heteronuclear multiple bond correlation spectra. These results suggested the small structural change could lead to a big difference in anion storage, and we hope this work will stimulate more attention to the structural design for boosting the performance of organic batteries.

3.
ChemSusChem ; 16(9): e202202216, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36797983

ABSTRACT

Solid-state batteries have become one of the hottest research areas today, due to the use of solid-state electrolytes enabling the high safety and energy density. Because of the interaction with electrolyte salts and the abundant ion transport sites, natural polysaccharide polymers with rich functional groups such as -OH, -OR or -COO- etc. have been applied in solid-state electrolytes and have the merits of possibly high ionic conductivity and sustainability. This review summarizes the recent progress of natural polysaccharides and derivatives for polymer electrolytes, which will stimulate further interest in the application of polysaccharides for solid-state batteries.

4.
RSC Adv ; 11(33): 20285-20291, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-35479886

ABSTRACT

A tungsten-based electrocatalyst for hydrogen evolution reaction is vital for developing sustainable and clean energy sources. Herein, W2N/WC composite nanofibers were synthesized through electrospinning technology and simultaneous carbonization and N-doping at high temperature. The composite nanofiber has higher catalytic activity than any simple compound. It exhibits remarkable hydrogen evolution performance in acidic media with a low overpotential of -495 mV, at a current density of -50 mA cm-2. The excellent hydrogen evolution performance of the composite nanofiber could be attributed to the abundant active sites, strong light absorption and fast charge transfer. The method used in this work provides a new possibility for the fabrication of high-performance electrocatalysts rationally.

5.
Biosens Bioelectron ; 142: 111577, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31430613

ABSTRACT

A novel nonsemiconductor photoelectrochemical biosensor was first constructed using the unique plasmonic AuNi nanodendrite arrays. The AuNi nanodendrite arrays were rapidly prepared by a one-step electrodeposition method using the porous anodic aluminum templates. Owing to its hierarchical structure with abundant active sites, the synergistic catalytic of Au and Ni can be better exploited. These plasmonic AuNi nanodendrite arrays display exceptional photoelectrocatalytic activities for glucose oxidation and hydrogen peroxide reduction reaction under visible light illumination. Specifically, the detection sensitivity for glucose (3.7277 mA mM-1 cm-2) under illumination is about 3.3 folds improvement than in the dark (1.1287 mA mM-1 cm-2), together with high accuracy and low detection limit of 3 µM. The markedly enhanced performance of AuNi nanodendrite arrays can be attributed to its hierarchical structure with abundant active sites and plasmonic effect of Au with strong absorption band in visible region. Such a newly developed method via the facile and low-cost route is of great significance in designing the plasmon-aided photoelectrochemical biosensors.


Subject(s)
Biosensing Techniques/methods , Blood Glucose/analysis , Gold/chemistry , Hydrogen Peroxide/analysis , Nanostructures/chemistry , Nickel/chemistry , Electrochemical Techniques/methods , Electroplating/methods , Humans , Limit of Detection , Male , Nanostructures/ultrastructure , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL
...