Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 357(5): e2300693, 2024 May.
Article in English | MEDLINE | ID: mdl-38332316

ABSTRACT

Aß1-42 and acetylcholinesterase (AChE) are two key therapeutic targets for Alzheimer's disease (AD). The purpose of this study is to develop a dual-target inhibitor that inhibits both of these targets by fusing the chemical structure of baicalein and donepezil. Among them, we modified the structure of baicalein to arylcoumarin, synthesized three kinds of structural compounds, and evaluated their biological activities. The results showed that compound 3b had the strongest inhibitory effect on AChE (IC50 = 0.05 ± 0.02 µM), which was better than those of donepezil and baicalein. In addition, compound 3b has a strong ability to inhibit the aggregation of Aß1-42 and protect nerve cells, and it can also penetrate the blood-brain barrier well. Using a zebrafish behavioral analyzer test, it was found that compound 3b can alleviate the behavioral effects of AlCl3-induced zebrafish larval movement retardation, which has a certain guiding significance for simulating the movement disorders of AD patients. In summary, compound 3b is expected to become a multifunctional agent for treating and alleviating the symptoms of AD patients.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid beta-Peptides , Cholinesterase Inhibitors , Drug Design , Zebrafish , Alzheimer Disease/drug therapy , Animals , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Structure-Activity Relationship , Acetylcholinesterase/metabolism , Humans , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/pharmacology , Donepezil/pharmacology , Donepezil/chemical synthesis , Donepezil/chemistry , Blood-Brain Barrier/metabolism , Molecular Structure , Flavanones/pharmacology , Flavanones/chemical synthesis , Flavanones/chemistry , Dose-Response Relationship, Drug , Behavior, Animal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...