Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(26): 34824-34837, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33661495

ABSTRACT

In this work, microwave (MW) irradiation was employed to enhance the zero-valent iron (ZVI)-dominated de-contamination of chromite ore processing residue (COPR). A coupling system and the traditional two-step procedure were both conducted to evaluate the effects of MW irradiation on the reduction and the incorporation of COPR into the composite materials-based geopolymers. The factors including the ratios of liquid to solid, the mass ratios of ZVI to COPR, and the acid dosage had some obvious influence on the reduction of COPR in the MW system. The compressive strengths of 31.54 and 41.56 MPa were determined from the two-step procedure and the coupling system at the COPR dosage of 10% (mass ratio), respectively. The employment of MW irradiation not only strengthened the formation of the geopolymer matrices but also improved the chemical stabilization of Cr species in the solidified blocks. The coupled process was more conducive to incorporating the treated COPR into the geopolymer-based crystalline microstructures compared with the subsequent usage of ZVI reduction and MW irradiation.


Subject(s)
Chromium , Iron , Chromium/analysis , Industrial Waste/analysis , Microwaves
2.
J Environ Manage ; 280: 111697, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33246753

ABSTRACT

Biohazard performance of Sr radionuclide can be significantly magnified by its release from the contaminated sedimentation. In this study, hydroxyapatite nanoparticle-functionalized activated carbon electrode (AC-HAP) was synthesized and stacked to the cathode compartment of the electrokinetic (EK) system to develop a unipolar three-dimensional (3D) electrochemical process for Sr2+ removal from spiked soils. Sr2+ adsorption by AC-HAP can be fitted by the pseudo-first-order and pseudo-second-order kinetic models and the Langmuir, Freundlich, and Temkin isotherm models. The largest monolayer adsorption capacity of AC-HAP of 69.49 mg g-1 was evaluated in the pH range of 10-12 and at 40 °C. 3D EK further intensified the adsorption process of AC-HAP and the corresponding Sr2+ removal from aqueous environments. Voltage gradients and proposing time had a significant effect on the migration and transmission of Sr2+ in the electrolyzer. The influence of competitive ions on Sr2+ removal in the stock solutions followed Al3+ < Mg2+ < K+ < Na+ < Ca2+ while followed Al3+ < Na+ < K+ < Mg2+ < Ca2+ in 3D EK. The first three cycles for AC-HAP had taken roughly 50% of the reusability percentage. Sr2+ removal from spiked samples in 3D EK was achieved by acid dissolution, electromigration, and selective uptake on particle electrode.


Subject(s)
Charcoal , Nanoparticles , Adsorption , Durapatite , Electrodes , Soil , Strontium
SELECTION OF CITATIONS
SEARCH DETAIL