Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Placenta ; 143: 87-90, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866321

ABSTRACT

Trophoblast injury is central to clinically relevant placenta dysfunction. We hypothesized that the mRNA of primary human trophoblasts, exposed to distinct injuries in vitro, capture transcriptome patterns of placental biopsies obtained from common obstetrical syndromes. We deployed a CIBERSORTx deconvolution method to correlate trophoblastic RNAseq-based expression matrices with the transcriptome of omics-defined placental dysfunction patterns in vivo. We found distinct trophoblast injury patterns in placental biopsies from women with fetal growth restriction and a hypertensive disorder, or in biopsies clustered by their omics analysis. Our RNAseq data are useful for defining the contribution of trophoblast injuries to placental dysfunction syndromes.


Subject(s)
Placenta Diseases , Placenta , Female , Pregnancy , Humans , Placenta/metabolism , Trophoblasts/metabolism , Transcriptome , Placenta Diseases/pathology
2.
BMC Med ; 21(1): 349, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37679695

ABSTRACT

BACKGROUND: Placental dysfunction, a root cause of common syndromes affecting human pregnancy, such as preeclampsia (PE), fetal growth restriction (FGR), and spontaneous preterm delivery (sPTD), remains poorly defined. These common, yet clinically disparate obstetrical syndromes share similar placental histopathologic patterns, while individuals within each syndrome present distinct molecular changes, challenging our understanding and hindering our ability to prevent and treat these syndromes. METHODS: Using our extensive biobank, we identified women with severe PE (n = 75), FGR (n = 40), FGR with a hypertensive disorder (FGR + HDP; n = 33), sPTD (n = 72), and two uncomplicated control groups, term (n = 113), and preterm without PE, FGR, or sPTD (n = 16). We used placental biopsies for transcriptomics, proteomics, metabolomics data, and histological evaluation. After conventional pairwise comparison, we deployed an unbiased, AI-based similarity network fusion (SNF) to integrate the datatypes and identify omics-defined placental clusters. We used Bayesian model selection to compare the association between the histopathological features and disease conditions vs SNF clusters. RESULTS: Pairwise, disease-based comparisons exhibited relatively few differences, likely reflecting the heterogeneity of the clinical syndromes. Therefore, we deployed the unbiased, omics-based SNF method. Our analysis resulted in four distinct clusters, which were mostly dominated by a specific syndrome. Notably, the cluster dominated by early-onset PE exhibited strong placental dysfunction patterns, with weaker injury patterns in the cluster dominated by sPTD. The SNF-defined clusters exhibited better correlation with the histopathology than the predefined disease groups. CONCLUSIONS: Our results demonstrate that integrated omics-based SNF distinctively reclassifies placental dysfunction patterns underlying the common obstetrical syndromes, improves our understanding of the pathological processes, and could promote a search for more personalized interventions.


Subject(s)
Placenta , Pre-Eclampsia , Pregnancy , Infant, Newborn , Female , Humans , Bayes Theorem , Multiomics , Syndrome , Biopsy , Fetal Growth Retardation
3.
Front Cell Dev Biol ; 9: 677981, 2021.
Article in English | MEDLINE | ID: mdl-34150771

ABSTRACT

In the human placenta, two trophoblast cell layers separate the maternal blood from the villous basement membrane and fetal capillary endothelial cells. The inner layer, which is complete early in pregnancy and later becomes discontinuous, comprises the proliferative mononuclear cytotrophoblasts, which fuse together and differentiate to form the outer layer of multinucleated syncytiotrophoblasts. Because the syncytiotrophoblasts are responsible for key maternal-fetal exchange functions, tight regulation of this differentiation process is critical for the proper development and the functional role of the placenta. The molecular mechanisms regulating the fusion and differentiation of trophoblasts during human pregnancy remain poorly understood. To decipher the interactions of non-coding RNAs (ncRNAs) in this process, we exposed cultured primary human trophoblasts to standard in vitro differentiation conditions or to conditions known to hinder this differentiation process, namely exposure to hypoxia (O2 < 1%) or to the addition of dimethyl sulfoxide (DMSO, 1.5%) to the culture medium. Using next generation sequencing technology, we analyzed the differential expression of trophoblastic lncRNAs, miRNAs, and mRNAs that are concordantly modulated by both hypoxia and DMSO. Additionally, we developed a model to construct a lncRNA-miRNA-mRNA co-expression network and inferred the functions of lncRNAs and miRNAs via indirect gene ontology analysis. This study improves our knowledge of the interactions between ncRNAs and mRNAs during trophoblast differentiation and identifies key biological processes that may be impaired in common gestational diseases, such as fetal growth restriction or preeclampsia.

4.
Oncogene ; 38(3): 390-405, 2019 01.
Article in English | MEDLINE | ID: mdl-30111819

ABSTRACT

Immunotherapy strategies have been emerging as powerful weapons against cancer. Early clinical trials reveal that overall response to immunotherapy is low in breast cancer patients, suggesting that effective strategies to overcome resistance to immunotherapy are urgently needed. In this study, we investigated whether epigenetic reprograming by modulating histone methylation could enhance effector T lymphocyte trafficking and improve therapeutic efficacy of immune checkpoint blockade in breast cancer with focus on triple-negative breast cancer (TNBC) subtype. In silico analysis of The Cancer Genome Atlas (TCGA) data shows that expression of histone lysine-specific demethylase 1 (LSD1) is inversely associated with the levels of cytotoxic T cell-attracting chemokines (C-C motif chemokine ligand 5 (CCL5), C-X-C motif chemokine ligand 9 and 10 (CXCL9, CXCL10)) and programmed death-ligand 1 (PD-L1) in clinical TNBC specimens. Tiling chromatin immunoprecipitation study showed that re-expression of chemokines by LSD1 inhibition is associated with increased H3K4me2 levels at proximal promoter regions. Rescue experiments using concurrent treatment with small interfering RNA or inhibitor of chemokine receptors blocked LSD1 inhibitor-enhanced CD8+ T cell migration, indicating a critical role of key T cell chemokines in LSD1-mediated CD8+ lymphocyte trafficking to the tumor microenvironment. In mice bearing TNBC xenograft tumors, anti-PD-1 antibody alone failed to elicit obvious therapeutic effect. However, combining LSD1 inhibitors with PD-1 antibody significantly suppressed tumor growth and pulmonary metastasis, which was associated with reduced Ki-67 level and augmented CD8+ T cell infiltration in xenograft tumors. Overall, these results suggest that LSD1 inhibition may be an effective adjuvant treatment with immunotherapy as a novel management strategy for poorly immunogenic breast tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Histone Code/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Immunotherapy/methods , Neoplasm Proteins/antagonists & inhibitors , Triple Negative Breast Neoplasms/immunology , Tumor Escape/drug effects , Animals , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Chemokines/metabolism , Female , Histone Deacetylase Inhibitors/therapeutic use , Humans , Methylation , Mice , Mice, Inbred BALB C , Mice, Nude , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Promoter Regions, Genetic/drug effects , RNA Interference , RNA, Small Interfering/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/enzymology , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
5.
ACS Nano ; 4(5): 2643-8, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20433194

ABSTRACT

We have demonstrated that by coating with a thin dielectric layer of tetrahedral amorphous carbon (ta-C), a biocompatible and optical transparent material in the visible range, the Ag nanoparticle-based substrate becomes extremely suitable for surface-enhanced Raman spectroscopy (SERS). Our measurements show that a 10 A or thicker ta-C layer becomes efficient to protect the oxygen-free Ag in air and prevent Ag ionizing in aqueous solutions. Furthermore, the Ag nanoparticles substrate coated with a 10 A ta-C film shows a higher enhancement of Raman signals than the uncoated substrate. These observations are further supported by our numerical simulations. We suggest that biomolecule detections in analytic assays could be easily realized using ta-C-coated Ag-based substrate for SERS especially in the visible range. The coated substrate also has higher mechanical stability, chemical inertness, and technological compliance, and may be useful, for example, to enhance TiO(2) photocatalysis and solar-cell efficiency by the surface plasmons.


Subject(s)
Diamond/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods , Hydrogen/chemistry , Microscopy, Atomic Force , Surface Properties
6.
Langmuir ; 26(11): 7859-64, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20201578

ABSTRACT

Self-assembly of colloidal spheres confined within cells of different shapes formed with two slides under capillary forces are studied. It is found that by controlling the shape of the cell the curvature of the drying front can result in a significant effect on the self-organization process. A curved drying front formed within parallel slides is always associated with growth of colloidal crystal structures with a high density of disorder. We demonstrate that single-domain two-dimensional colloidal crystals with centimeter size can be grown under capillary forces under a straight drying front formed in a wedge-shaped cell. These findings are demonstrated by laser diffraction, microscopy imaging methods and off-normal optical transmission measurements. The present growth method should be of importance in expanding colloidal crystal applications in angle-resolved nanosphere lithography, as well as in preparation of high-quality quasi-three-dimensional plasmonic crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...