Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 11(4): 447-451, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35575316

ABSTRACT

The Diels-Alder reaction is striking as a prominent synthetic tool for the rapid construction of complex molecular frameworks, but the synthesis of porous organic polymers (POPs) via the Diels-Alder reaction is rare. Herein, we report the solvothermal synthesis of a new type of POPs (DA-POPs) via the furan/alkynyl Diels-Alder reaction. These polymers show favorable porous properties and high specific surface areas (up to 1041 m2·g-1). Meanwhile, the high porosity in conjuction of ether bridges in the DA-POPs enable a fine adsorption performance for the removal of Cr(VI) from aqueous solutions.


Subject(s)
Chromium , Polymers , Cycloaddition Reaction , Porosity , Water
2.
Macromol Rapid Commun ; 43(18): e2100836, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35141972

ABSTRACT

In this work, novel hypercrosslinked polymer-based hollow microporous organic capsules with a polyaniline (PANI)-modified shell (PANI@S-HMOCs) are prepared by in-situ polymerization of aniline in the porous structure of the sulfonated hollow microporous organic capsules (S-HMOCs). PANI@S-HMOC1, PANI@S-HMOC2, and PANI@S-HMOC3 are made by adjusting S-HMOCs and aniline weight ratios of 4:1 and 3:1, and 2:1, respectively. The characterizations of PANI@S-HMOCs demonstrate that electrostatic interaction between aniline and sulfonic acid groups plays an important role in encapsulating PANI in the pores of the shell. The content of PANI shows an evident effect on the porosity of PANI@S-HMOCs, and an appropriate polyaniline loading amount may increase the surface area. PANI@S-HMOC1 and PANI@S-HMOC2 have higher BET surface areas (529 and 503 m2 g-1 ) than S-HMOCs (424 m2 g-1 ), but PANI@S-HMOC3 has lower BET surface area (380 m2 g-1 ). Based on the structural and textural features, PANI@S-HMOC2 shows good adsorption performance for Cr(VI) from aqueous media (156 mg g-1 , pH = 2, and 27 mg g-1 , pH = 7).

SELECTION OF CITATIONS
SEARCH DETAIL
...