Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.873
Filter
1.
Chem Biol Interact ; : 111141, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992767

ABSTRACT

Mitochondrial Pyruvate Carrier 1 (MPC1) is localized on mitochondrial outer membrane to mediate the transport of pyruvate from cytosol to mitochondria. It is also well known to act as a tumor suppressor. Hexavalent chromium (Cr (VI)) contamination poses a global challenge due to its high toxicity and carcinogenesis. This research was intended to probe the potential mechanism of MPC1 in the effect of Cr (VI)-induced carcinogenesis. First, Cr (VI)-treatments decreased the expression of MPC1 in vitro and in vivo. Overexpression of MPC1 inhibited Cr (VI)-induced glycolysis and migration in A549 cells. Then, high mobility group A2 (HMGA2) protein strongly suppressed the transcription of MPC1 by binding to its promoter, and HMGA2/MPC1 axis played an important role in oxidative phosphorylation (OXPHOS), glycolysis and cell migration. Furthermore, endoplasmic reticulum (ER) stress made a great effect on the interaction between HMGA2 and MPC1. Finally, the mammalian target of the rapamycin (mTOR) was determined to mediate MPC1-regulated OXPHOS, aerobic glycolysis and cell migration. Collectively, our data revealed a novel HMGA2/MPC-1/mTOR signaling pathway to promote cell growth via facilitating the metabolism reprogramming from OXPHOS to aerobic glycolysis, which might be a potential therapy for cancers.

2.
Ecotoxicol Environ Saf ; 281: 116639, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964069

ABSTRACT

Hexavalent chromium [Cr(VI)] exists widely in occupational environments. The mechanistic target of rapamycin (mTOR) has been well-documented to regulate autophagy negatively. However, we found that low concentration of Cr(VI) (0.2 µM) elevated both mTOR and autophagy and promote cell survival. Conversely, high concentration of Cr(VI) (6 µM) caused cell death by inhibiting mTOR and subsequently inducing autophagy. Tunicamycin (Tm), as an Endoplasmic reticulum (ER) stress activator was used to induce mild ER stress at 0.1 µg/ml and it activated both autophagy and mTOR, which also caused cell migration in a similar manner to that observed with low concentration of Cr(VI). Severe ER stress caused by Tm (2 µg/ml) decreased mTOR, increased autophagy and then inhibited cell migration, which was the same as 6 µM Cr(VI) treatment, although Cr(VI) in high concentration inhibited ER stress. Activating transcription factor 4 (ATF4), a downstream target of ER stress, only increased under mild ER stress but decreased under severe ER stress and 6 µM Cr(VI) treatment. Chromatin immunoprecipitation (ChIP) experiment indicated that ATF4 could bind to the promoter of ATG4B and AKT1. To sum up, our data revealed that mild ER stress induced by low concentration of Cr(VI) could enhance transcriptional regulation of ATG4B and AKT1 by ATF4, which induced both autophagy and mTOR to promote cell viability.

3.
Chem Sci ; 15(26): 10084-10091, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38966356

ABSTRACT

Electrocatalytic hydrogen production in seawater to alleviate freshwater shortage pressures is promising, but is hindered by the sluggish oxygen evolution reaction and detrimental chloride electrochemistry. Herein, a dual strategy approach of Fe-doping and CeO2-decoration in nickel phosphide (Fe-Ni2P/CeO2) is rationally designed to achieve superior bifunctional catalytic performance for the hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) in seawater. Notably, the two-electrode Fe-Ni2P/CeO2-based hybrid seawater electrolyzer realizes energy-efficient and chlorine-free hydrogen production with ultralow cell voltages of 0.051 and 0.597 V at 10 and 400 mA cm-2, which are significantly lower than those needed in the hydrazine-free seawater electrolyzer. Density functional theory calculations manifest that the combination of Fe doping and heterointerface construction between Fe-Ni2P and CeO2 can adjust the electronic structure of the Ni2P and optimize the water dissociation barrier and hydrogen adsorption free energy, leading to improvement of the intrinsic catalytic performance. This route affords a feasible solution for future large-scale hydrogen generation using abundant ocean water.

4.
Sci Rep ; 14(1): 15845, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982098

ABSTRACT

To explore the dynamics in physical and technical performance of professional football players and changes across age groups. Match statistics were collected from 1900 games across ten seasons (2012-2021) in the Chinese Super League. Generalized additive models visualized age-related trends in 12 key performance indicators including technical and physical variables. Revealed nonlinear trajectories characterized by rapid early declines, stable peak periods and accelerated late decreases. Physical indicators decreased progressively from the early 20 s before stabilizing briefly then declining further after 30. Conversely, technical metrics gradually improved into the late 20 s and early 30 s prior to decreasing again. This study provides novel evidence that football performance changes nonlinearly across age. Targeted training and development strategies should be tailored to the specific needs of different career stages.


Subject(s)
Athletic Performance , Nonlinear Dynamics , Humans , Athletic Performance/physiology , China , Adult , Male , Age Factors , Soccer/physiology , Young Adult
5.
Hortic Res ; 11(7): uhae142, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988622

ABSTRACT

Chinese cherry (Prunus pseudocerasus) holds considerable importance as one of the primary stone fruit crops in China. However, artificially improving its traits and genetic analysis are challenging due to lack of high-quality genomic resources, which mainly result from difficulties associated with resolving its tetraploid and highly heterozygous genome. Herein, we assembled a chromosome-level, haplotype-resolved genome of the cultivar 'Zhuji Duanbing', comprising 993.69 Mb assembled into 32 pseudochromosomes using PacBio HiFi, Oxford Nanopore, and Hi-C. Intra-haplotype comparative analyses revealed extensive intra-genomic sequence and expression consistency. Phylogenetic and comparative genomic analyses demonstrated that P. pseudocerasus was a stable autotetraploid species, closely related to wild P. pusilliflora, with the two diverging ~18.34 million years ago. Similar to other Prunus species, P. pseudocerasus underwent a common whole-genome duplication event that occurred ~139.96 million years ago. Because of its low fruit firmness, P. pseudocerasus is unsuitable for long-distance transportation, thereby restricting its rapid development throughout China. At the ripe fruit stage, P. pseudocerasus cv. 'Zhuji Duanbing' was significantly less firm than P. avium cv. 'Heizhenzhu'. The difference in firmness is attributed to the degree of alteration in pectin, cellulose, and hemicellulose contents. In addition, comparative transcriptomic analyses identified GalAK-like and Stv1, two genes involved in pectin biosynthesis, which potentially caused the difference in firmness between 'Zhuji Duanbing' and 'Heizhenzhu'. Transient transformations of PpsGalAK-like and PpsStv1 increase protopectin content and thereby enhance fruit firmness. Our study lays a solid foundation for functional genomic studies and the enhancement of important horticultural traits in Chinese cherries.

6.
Int J Biol Sci ; 20(9): 3269-3284, 2024.
Article in English | MEDLINE | ID: mdl-38993552

ABSTRACT

Background: Lenvatinib is the most common multitarget receptor tyrosine kinase inhibitor for the treatment of advanced hepatocellular carcinoma (HCC). Acquired resistance to lenvatinib is one of the major factors leading to the failure of HCC treatment, but the underlying mechanism has not been fully characterized. Methods: We established lenvatinib-resistant cell lines, cell-derived xenografts (CDXs) and patient-derived xenografts (PDXs) and obtained lenvatinib-resistant HCC tumor tissues for further study. Results: We found that ubiquitin-specific protease 14 (USP14) was significantly increased in lenvatinib-resistant HCC cells and tumors. Silencing USP14 significantly attenuated lenvatinib resistance in vitro and in vivo. Mechanistically, USP14 directly interacts with and stabilizes calcium- and integrin-binding protein 1 (CIB1) by reversing K48-linked proteolytic ubiquitination at K24, thus facilitating the P21-activated kinase 1 (PAK1)-ERK1/2 signaling axis. Moreover, in vivo adeno-associated virus 9 mediated transduction of CIB1 promoted lenvatinib resistance in PDXs, whereas CIB1 knockdown resensitized the response of PDXs to lenvatinib. Conclusions: These findings provide new insights into the role of CIB1/PAK1-ERK1/2 signaling in lenvatinib resistance in HCC. Targeting CIB1 and its pathways may be a novel pharmaceutical intervention for the treatment of lenvatinib-resistant HCC.


Subject(s)
Carcinoma, Hepatocellular , Drug Resistance, Neoplasm , Liver Neoplasms , Phenylurea Compounds , Quinolines , Ubiquitin Thiolesterase , p21-Activated Kinases , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/drug therapy , Humans , Quinolines/pharmacology , Quinolines/therapeutic use , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Animals , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Mice , Cell Line, Tumor , MAP Kinase Signaling System , Mice, Nude , Ubiquitination
7.
Nat Commun ; 15(1): 4947, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858350

ABSTRACT

The potential brain mechanism underlying resilience to socially transferred allodynia remains unknown. Here, we utilize a well-established socially transferred allodynia paradigm to segregate male mice into pain-susceptible and pain-resilient subgroups. Brain screening results show that ventral tegmental area glutamatergic neurons are selectively activated in pain-resilient mice as compared to control and pain-susceptible mice. Chemogenetic manipulations demonstrate that activation and inhibition of ventral tegmental area glutamatergic neurons bi-directionally regulate resilience to socially transferred allodynia. Moreover, ventral tegmental area glutamatergic neurons that project specifically to the nucleus accumbens shell and lateral habenula regulate the development and maintenance of the pain-resilient phenotype, respectively. Together, we establish an approach to explore individual variations in pain response and identify ventral tegmental area glutamatergic neurons and related downstream circuits as critical targets for resilience to socially transferred allodynia and the development of conceptually innovative analgesics.


Subject(s)
Glutamic Acid , Hyperalgesia , Neurons , Nucleus Accumbens , Ventral Tegmental Area , Animals , Male , Hyperalgesia/physiopathology , Ventral Tegmental Area/physiopathology , Mice , Glutamic Acid/metabolism , Nucleus Accumbens/physiopathology , Neurons/metabolism , Mesencephalon , Mice, Inbred C57BL , Resilience, Psychological , Habenula , Disease Models, Animal
8.
Eur J Med Res ; 29(1): 318, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858746

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a common type of malignant tumor where the prognosis is dismal. Circular RNA (CircRNA) is a novel RNA that regulates downstream gene transcription and translation to influence the progression of HCC. However, the regulatory relationship that exists between E3 ligases, which is a class of post-translational modifying proteins, and circRNA remains unclear. METHODS: Based on the E3 ubiquitin ligase in the competitive endogenous RNA (ceRNA) network, a circRNA-regulated E3 ubiquitin ligase signature (CRE3UL) was developed. A CRE3UL signature was created using the least absolute shrinkage and selection operator (Lasso) and Cox regression analysis and merged it with clinicopathologic characteristics to generate a nomogram for prognosis prediction. The pRRophetic algorithm was utilized and immunological checkpoints were analyzed to compare the responses of patients in the high-risk group (HRG) and low-risk group (LRG) to targeted therapy and immunotherapy. Finally, experimental research will further elucidate the relationship between E3 ubiquitin ligase signature and HCC. RESULTS: HRG patients were found to have a worse prognosis than LRG patients. Furthermore, significant variations in prognosis were observed among different subgroups based on various clinical characteristics. The CRE3UL signature was identified as being an independent prognostic indicator. The nomogram that combined clinical characteristics and the CRE3UL signature was found to accurately predict the prognosis of HCC patients and demonstrated greater clinical utility than the current TNM staging approach. According to anticancer medication sensitivity predictions, the tumors of HRG patients were more responsive to gefitinib and nilotinib. From immune-checkpoint markers analysis, immunotherapy was identified as being more probable to assist those in the HRG. CONCLUSIONS: We found a significant correlation between the CRE3UL signature and the tumor microenvironment, enabling precise prognosis prediction for HCC patients. Additionally, a nomogram was developed that performs well in predicting the overall survival (OS) of HCC patients. This provides valuable guidance for clinicians in devising specific personalized treatment strategies.


Subject(s)
Carcinoma, Hepatocellular , Immunotherapy , Liver Neoplasms , Nomograms , RNA, Circular , Ubiquitin-Protein Ligases , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/therapy , Prognosis , RNA, Circular/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Immunotherapy/methods , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , Gene Expression Regulation, Neoplastic
9.
Article in English | MEDLINE | ID: mdl-38836654

ABSTRACT

STUDY DESIGN/SETTING: This retrospective study analyzed bracing outcomes in AIS patients, focusing on curve pattern changes and brace efficacy. OBJECTIVE: To analyze the effectiveness of the Chêneau brace across different curve patterns and to evaluate the tendencies in curve evolution during treatment. SUMMARY OF BACKGROUND DATA: Adolescent idiopathic scoliosis (AIS) presents diverse curve patterns, each responding differently to bracing. Understanding these variations is crucial for optimizing treatment strategies. METHODS: The study included 177 AIS patients treated with Chêneau orthoses, categorized based on curve patterns as per the main curve and modified Lenke (mLenke) classifications. We compared patients according to curve patterns and assessed changes in curve magnitude and pattern before and after treatment. RESULTS: Over an average follow-up of 28.1±10.7 months, the primary curve magnitude decreased from 28.8±6.6° to 25.9±10.5°. Significant reductions were observed in mLenke V and VI patients (P<0.05). Patients with main lumbar curves showed better initial in-brace correction and curve control compared with those with main thoracic curves (P<0.05). In single-curve patterns, binary logistic regression indicated that mLenke V patients demonstrated higher rates of curve control compared with mLenke I patients (P<0.05). No significant differences were found in double-curve patterns between mLenke III and VI (P>0.05). At the final follow-up, thoracolumbar/lumbar curves improved significantly in mLenke III and VI patients (P<0.05), while thoracic curves did not (P>0.05). Furthermore, at the last follow-up, the proportions of mLenke I, II, and IV increased, while mLenke III, V, and VI decreased. CONCLUSIONS: Bracing outcomes were more favorable in patients with main lumbar curves than those with main thoracic curves. However, no significant differences were found in patients with double-curve patterns. Thoracic curves exhibited a higher progression risk compared with thoracolumbar/lumbar curves within the same curve pattern. During bracing, a tendency for primary curves to shift proximally was noted.

11.
Environ Sci Technol ; 58(25): 11118-11127, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38864774

ABSTRACT

Intermediate volatility organic compounds (IVOCs) are important precursors to secondary organic aerosols (SOAs), but they are often neglected in studies concerning SOA formation. This study addresses the significant issue of IVOCs emissions in the Qinghai-Tibetan plateau (QTP), where solid fuels are extensively used under incomplete combustion conditions for residential heating and cooking. Our field measurement data revealed an emission factor of the total IVOCs (EFIVOCs) ranging from 1.56 ± 0.03 to 9.97 ± 3.22 g/kg from various combustion scenarios in QTP. The markedly higher EFIVOCs in QTP than in plain regions can be attributed to oxygen-deficient conditions. IVOCs were dominated by gaseous phase emissions, and the primary contributors of gaseous and particulate phase IVOCs are the unresolved complex mixture and alkanes, respectively. Total IVOCs emissions during the heating and nonheating seasons in QTP were estimated to be 31.7 ± 13.8 and 6.87 ± 0.45 Gg, respectively. The estimated SOA production resulting from combined emissions of IVOCs and VOCs is nearly five times higher than that derived from VOCs alone. Results from this study emphasized the pivotal role of IVOCs emissions in air pollution and provided a foundation for compiling emission inventories related to solid fuel combustion and developing pollution prevention strategies.


Subject(s)
Aerosols , Air Pollutants , Coal , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Air Pollutants/analysis , China , Animals , Tibet , Environmental Monitoring
12.
Fitoterapia ; 177: 106077, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906387

ABSTRACT

The screening of based target compounds supported by LC/MS, MS/MS and Global Natural Products Social (GNPS) used to identify the compounds 1-10 of Butea monsperma. They were evaluated in human malignant embryonic rhabdomyoma cells (RD cells) infected with Human coronavirus OC43 (HCoV-OC43) and showed significant inhibitory activity. Target inhibition tests showed that compounds 6 and 8 inhibited the proteolytic enzyme 3CLpro, which is widely present in coronavirus and plays an important role in the replication process, with an effective IC50 value. The study confirmed that dioxymethylene of compound 8 may be a key active fragment in inhibiting coronavirus (EC50 7.2 µM, SI > 139.1). The results have led to identifying natural bioactive compounds for possible inhibiting HCoV-OC43 and developing drug for Traditional Chinese Medicine (TCM).

13.
J Hazard Mater ; 474: 134759, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38823100

ABSTRACT

Short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) are hazardous industrial chemicals that tend to bioaccumulate in animal-derived foodstuffs through the food supply chain. However, the lack of reliable noninvasive bioindicators hinders the monitoring of farm animal exposure to CPs. In this study, 169 cattle hair samples were collected from beef cattle farms in six Chinese provinces, with further beef, feed, and soil samples being collected in Hebei province. Geographical differences in CP concentrations were observed in the hair samples, and CP concentrations in samples collected from Hebei province decreased in the following order: hair > feed > beef > soil. C10-11Cl6-7 and C14Cl7-8 were the predominant SCCPs and MCCPs, respectively, in all the hair, beef, feed, and soil samples. CP concentrations in hair samples significantly correlated with those in beef, feed, and soil samples, indicating that hair can be used as a bioindicator of cattle exposure to CPs. The possible health risks associated with exposure to CPs through beef consumption, especially for children and high-volume beef consumers, should be further investigated.


Subject(s)
Hair , Paraffin , Animals , Cattle , Hair/chemistry , Paraffin/analysis , China , Hydrocarbons, Chlorinated/analysis , Animal Feed/analysis , Environmental Monitoring/methods , Farms , Soil Pollutants/analysis , Environmental Pollutants/analysis , Food Contamination/analysis
14.
Sci Adv ; 10(25): eadn8079, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905336

ABSTRACT

Autophagy-targeting chimera (AUTAC) has emerged as a powerful modality that can selectively degrade tumor-related pathogenic proteins, but its low bioavailability and nonspecific distribution significantly restrict their therapeutic efficacy. Inspired by the guanine structure of AUTAC molecules, we here report supramolecular artificial Nano-AUTACs (GM NPs) engineered by AUTAC molecule GN [an indoleamine 2,3-dioxygenase (IDO) degrader] and nucleoside analog methotrexate (MTX) through supramolecular interactions for tumor-specific protein degradation. Their nanostructures allow for precise localization and delivery into cancer cells, where the intracellular acidic environment can disrupt the supramolecular interactions to release MTX for eradicating tumor cells, modulating tumor-associated macrophages, activating dendritic cells, and inducing autophagy. Specifically, the induced autophagy facilitates the released GN for degrading immunosuppressive IDO to further enhance effector T cell activity and inhibit tumor growth and metastasis. This study offers a unique strategy for building a nanoplatform to advance the field of AUTAC in tumor immunotherapy.


Subject(s)
Autophagy , Immunotherapy , Immunotherapy/methods , Animals , Mice , Humans , Autophagy/drug effects , Cell Line, Tumor , Proteolysis , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Nanoparticles/chemistry , Methotrexate/pharmacology , Methotrexate/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Dendritic Cells/metabolism , Dendritic Cells/immunology
15.
Mol Hortic ; 4(1): 25, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898491

ABSTRACT

Prunus conradinae, a valuable flowering cherry belonging to the Rosaceae family subgenus Cerasus and endemic to China, has high economic and ornamental value. However, a high-quality P. conradinae genome is unavailable, which hinders our understanding of its genetic relationships and phylogenesis, and ultimately, the possibility of mining of key genes for important traits. Herein, we have successfully assembled a chromosome-scale P. conradinae genome, identifying 31,134 protein-coding genes, with 98.22% of them functionally annotated. Furthermore, we determined that repetitive sequences constitute 46.23% of the genome. Structural variation detection revealed some syntenic regions, inversions, translocations, and duplications, highlighting the genetic diversity and complexity of Cerasus. Phylogenetic analysis demonstrated that P. conradinae is most closely related to P. campanulata, from which it diverged ~ 19.1 million years ago (Mya). P. avium diverged earlier than P. cerasus and P. conradinae. Similar to the other Prunus species, P. conradinae underwent a common whole-genome duplication event at ~ 138.60 Mya. Furthermore, 79 MADS-box members were identified in P. conradinae, accompanied by the expansion of the SHORT VEGETATIVE PHASE subfamily. Our findings shed light on the complex genetic relationships, and genome evolution of P. conradinae and will facilitate research on the molecular breeding and functions of key genes related to important horticultural and economic characteristics of subgenus Cerasus.

16.
ACS Nano ; 18(26): 16343-16358, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38899467

ABSTRACT

Extending the inventory of two-dimensional (2D) materials remains highly desirable, given their excellent properties and wide applications. Current studies on 2D materials mainly focus on the van der Waals (vdW) materials since the discovery of graphene, where properties of atomically thin layers have been found to be distinct from their bulk counterparts. Beyond vdW materials, there are abundant non-vdW materials that can also be thinned down to 2D forms, which are still in their early stage of exploration. In this review, we focus on the downscaling of non-vdW materials into 2D forms to enrich the 2D materials family. This underexplored group of 2D materials could show potential promise in many areas such as electronics, optics, and magnetics, as has happened in the vdW 2D materials. Hereby, we will focus our discussion on their electronic properties and applications of them. We aim to motivate and inspire fellow researchers in the 2D materials community to contribute to the development of 2D materials beyond the widely studied vdW layered materials for electronic device applications. We also give our insights into the challenges and opportunities to guide researchers who are desirous of working in this promising research area.

17.
Sci Total Environ ; 945: 174093, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38906307

ABSTRACT

Black carbon (BC) and brown carbon (BrC) over the high-altitude Tibetan Plateau (TP) can significantly influence regional and global climate change as well as glacial melting. However, obtaining plateau-scale in situ observations is challenging due to its high altitude. By integrating reanalysis data with on-site measurements, the spatial distribution of BC and BrC can be accurately estimated using the random forest algorithm (RF). In our study, the on-site observations of BC and BrC were successively conducted at four sites from 2018 to 2021. Ground-level BC and BrC concentrations were then obtained at a spatial resolution of 0.25° × 0.25° for three periods (including Periods-1980, 2000, and 2020) using RF and multi-source data. The highest annual concentrations of BC (1363.9 ± 338.7 ng/m3) and BrC (372.1 ± 96.2 ng/m3) were observed during Period-2000. BC contributed a dominant proportion of carbonaceous aerosol, with concentrations 3-4 times higher than those of BrC across the three periods. The ratios of BrC to BC decreased from Period-1980 to Period-2020, indicating the increasing importance of BC over the TP. Spatial distributions of plateau-scale BC and BrC concentrations showed heightened levels in the southeastern TP, particularly during Period-2000. These findings significantly enhance our understanding of the spatio-temporal distribution of light-absorbing carbonaceous aerosol over the TP.

18.
ACS Appl Mater Interfaces ; 16(26): 34113-34124, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38914520

ABSTRACT

Developing fabric-based strain sensors with high sensitivity and stability is in high demand for wearable electronics. Herein, carbon nanotubes (CNTs) and polypyrrole (PPy) are coated on a thermoplastic polyurethane (TPU) fabric as strain sensors. A microbridge structure, in which CNT bridges the stretching-induced cracks, has been designed for the TPU-CNT-PPy strain sensor. The microbridge structure can significantly enhance the electrical resilience, ensuring the improved sensitivity and stability of strain sensors. As a result, our TPU-CNT-PPy strain sensors deliver high sensitivity (GF = 231.5) with a broad working range (150%) and fast response and recovery time (166/195 ms). In addition, our TPU-CNT-PPy could also be used as flexible electrodes of the microsupercapacitors (MSCs) as a power supplier for the integrated sensing system. The TPU-CNT-PPy-based MSCs exhibit a high specific capacitance (460.3 mF cm-2 at 0.5 mA cm-2) and excellent cycling stability (96.69% capacitance retention for 10,000 charge/discharge cycles). Finally, we demonstrated an integrated sensing system using TPU-CNT-PPy as both MSCs and strain sensors, where the current signals of the sensors could be well detected via Bluetooth. This study offers a microbridge strategy to fabricate strain sensors with high sensitivity and stability and develops an integrated sensing system for the actual applications of wearable electronics.

19.
STAR Protoc ; 5(2): 103124, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38870017

ABSTRACT

Global warming will change the photosynthesis and transpiration of plants greatly and ultimately affect water use efficiency (WUE). Here, we present a protocol to investigate the response of maize WUE to the coupling effect of CO2 and temperature at ear stage using a specialized designed gradient. We describe steps for plant culture, parameter measurements, model fitting, and statistical analysis. This protocol holds potential for studying the response of WUE and CO2 adaptation across various plant species. For complete details on the use and execution of this protocol, please refer to Sun et al.1.


Subject(s)
Carbon Dioxide , Photosynthesis , Temperature , Zea mays , Zea mays/physiology , Carbon Dioxide/metabolism , Photosynthesis/physiology , Water/metabolism , Plant Transpiration/physiology
20.
PLoS Pathog ; 20(6): e1012334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941356

ABSTRACT

Plasmodium vivax serological exposure markers (SEMs) have emerged as promising tools for the actionable surveillance and implementation of targeted interventions to accelerate malaria elimination. To determine the dynamic profiles of SEMs in current and past P. vivax infections, we screened and selected 11 P. vivax proteins from 210 putative proteins using protein arrays, with a set of serum samples obtained from patients with acute P. vivax and documented past P. vivax infections. Then we used a murine protein immune model to initially investigate the humoral and memory B cell response involved in the generation of long-lived antibodies. We show that of the 11 proteins, especially C-terminal 42-kDa region of P. vivax merozoite surface protein 1 (PvMSP1-42) induced longer-lasting long-lived antibodies, as these antibodies were detected in individuals infected with P. vivax in the 1960-1970s who were not re-infected until 2012. In addition, we provide a potential mechanism for the maintenance of long-lived antibodies after the induction of PvMSP1-42. The results indicate that PvMSP1-42 induces more CD73+CD80+ memory B cells (MBCs) compared to P. vivax GPI-anchored micronemal antigen (PvGAMA), allowing IgG anti-PvMSP1-42 antibodies to be maintained for a long time.


Subject(s)
Antibodies, Protozoan , Malaria, Vivax , Memory B Cells , Merozoite Surface Protein 1 , Plasmodium vivax , Plasmodium vivax/immunology , Humans , Malaria, Vivax/immunology , Antibodies, Protozoan/immunology , Animals , Merozoite Surface Protein 1/immunology , Mice , Memory B Cells/immunology , Immunity, Humoral/immunology , Biomarkers/blood , Female , Immunologic Memory/immunology , B-Lymphocytes/immunology , Antigens, Protozoan/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...