Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35666846

ABSTRACT

A flexible piezoelectric composite is composed of a polymer matrix and piezoelectric ceramic fillers to achieve good mechanical flexibility and processability. The overall piezoelectric performance of a composite is largely determined by the piezoelectric filler inside. Thus, different dispersion methods and additives that can promote the dispersion of piezoelectric ceramics and optimal composite structures have been actively investigated. However, relatively few attempts have been made to develop a filler that can effectively contribute to the performance enhancement of piezoelectric devices. In the present work, we introduce the fabrication and performance of the composite piezoelectric devices composed of Li-doped ZnO nanowires (Li: ZnO NWs) grown on the surface of MXene (Ti3C2) via the hydrothermal process. Through this approach, a semiconductor-metal hybrid structure is formed, increasing the overall permittivity. Moreover, the Ti3C2 layer can serve as a local ground in the composite so that the ferroelectric phase-transformed Li: ZnO NWs grown on its surface can be more effectively polarized during the poling process. In addition, the NW-covered surface of Ti3C2 prevents the aggregation of metallic Ti3C2 particles, promoting a more uniform electric field distribution during the poling process. As a result, the output performance of the piezoelectric nanogenerator (PENG) fabricated with a Li: ZnO NW/Ti3C2 composite was greatly improved compared to that of the devices fabricated with Li: ZnO NWs without the Ti3C2 platform. Specifically, the Li: ZnO NW/Ti3C2 composite piezoelectric nanogenerator (PENG) demonstrated a twofold higher output power density (∼9 µW/cm2) compared with the values obtained from the PENG devices based on Li: ZnO NWs. The approach introduced in this work can be easily adopted for an effective ferroelectric filler design to improve the output performance of the piezoelectric composite.

2.
J Colloid Interface Sci ; 616: 749-758, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35247813

ABSTRACT

Hematite-based photoanode (α-Fe2O3) is considered the promising candidate for photoelectrochemical (PEC) water splitting due to its relatively small optical bandgap. However, severe charge recombination in the bulk and poor surface water oxidation kinetics have limited the PEC performance of Fe2O3 photoelectrodes, which is far below the theoretical value. Herein, a new catalyst, S-doped FeOOH (S-FeOOH), has been immobilized onto the surface of the Fe2O3 nanorod (NR) array by a facile chemical bath deposition incorporated thermal sulfuration process. The grown S-FeOOH layer acts not only as an efficient catalyst layer to accelerate the water oxidation on the surface of photoelectrode but also constructs a heterojunction with the light absorption layer to facilitate the interface charge carrier separation and transfer. As expected, the modified S-FeOOH@Fe2O3 photoanode achieves a remarkable increase in PEC performance of 2.30 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (VRHE) andan apparent negative shifted onset potential of 250 mV in comparison with pristine Fe2O3 (0.95 mA cm-2 at 1.23 VRHE). These results provide a simple and effective strategy to coupling oxygen evolution catalysts with photoanodes for practically high-performance PEC applications.

3.
Nano Lett ; 20(11): 7803-7810, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33054243

ABSTRACT

Coupling of spin and heat currents enables the spin Nernst effect, the thermal generation of spin currents in nonmagnets that have strong spin-orbit interaction. Analogous to the spin Hall effect that electrically generates spin currents and associated electrical spin-orbit torques (SOTs), the spin Nernst effect can exert thermal SOTs on an adjacent magnetic layer and control the magnetization direction. Here, the thermal SOT caused by the spin Nernst effect is experimentally demonstrated in W/CoFeB/MgO structures. It is found that an in-plane temperature gradient across the sample generates a magnetic torque and modulates the switching field of the perpendicularly magnetized CoFeB. The W thickness dependence suggests that the torque originates mainly from thermal spin currents induced in W. Moreover, the thermal SOT reduces the critical current for SOT-induced magnetization switching, demonstrating that it can be utilized to control the magnetization in spintronic devices.

4.
Sci Rep ; 8(1): 11337, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30054593

ABSTRACT

We investigated the temperature distribution induced by laser irradiation of ultrathin magnetic films by applying a finite element method (FEM) to the finite difference time domain (FDTD) representation for the analysis of thermal induced spin currents. The dependency of the thermal gradient (∇T) of ultrathin magnetic films on material parameters, including the reflectivity and absorption coefficient were evaluated by examining optical effects, which indicates that reflectance (R) and the apparent absorption coefficient (α*) play important roles in the calculation of ∇T for ultrathin layers. The experimental and calculated values of R and α* for the ultrathin magnetic layers irradiated by laser-driven heat sources estimated using the combined FDTD and FEM method are in good agreement for the amorphous CoFeB and crystalline Co layers of thicknesses ranging from 3~20 nm. Our results demonstrate that the optical parameters are crucial for the estimation of the temperature gradient induced by laser illumination for the study of thermally generated spin currents and related phenomena.

SELECTION OF CITATIONS
SEARCH DETAIL
...