Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Phys Med Biol ; 67(22)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36162409

ABSTRACT

Pulmonary functional magnetic resonance imaging (PfMRI) provides a way to non-invasively map and measure the spatial distribution of pulmonary ventilation, perfusion and gas-exchange abnormalities with unprecedented detail of functional processes at the level of airways, alveoli and the alveolar-capillary membrane. Current PfMRI approaches are dominated by hyperpolarized helium-3 (3He) and xenon-129 (129Xe) gases, which both provide rapid (8-15 s) and well-tolerated imaging examinations in patients with severe pulmonary diseases and pediatric populations, whilst employing no ionizing radiation. While a number of review papers summarize the required image acquisition hardware and software requirements needed to enable PfMRI, here we focus on the image analysis and processing methods required for reproducible measurements using hyperpolarized gas ventilation MRI. We start with the transition in the literature from qualitative and subjective scoring systems to quantitative and objective measurements which enable precise quantification of the lung's critical structure-function relationship. We provide an overview of quantitative biomarkers and the relevant respiratory system parameters that may be measured using PfMRI methods, outlining the history of developments in the field, current methods and then knowledge gaps and typical limitations. We focus on hyperpolarized noble gas MR image processing methods used for quantifying ventilation and gas distribution in the lungs, and discuss the utility and applications of imaging biomarkers generated through these techniques. We conclude with a summary of the current and future directions to further the development of image processing methods, and discuss the remaining challenges for potential clinical translation of these approaches and their integration into standard clinical workflows.


Subject(s)
Helium , Magnetic Resonance Imaging , Child , Humans , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Image Processing, Computer-Assisted , Pulmonary Ventilation
2.
Med Image Anal ; 72: 102107, 2021 08.
Article in English | MEDLINE | ID: mdl-34153626

ABSTRACT

Ultra-short echo-time (UTE) magnetic resonance imaging (MRI) provides enhanced visualization of pulmonary structural and functional abnormalities and has shown promise in phenotyping lung disease. Here, we describe the development and evaluation of a lung segmentation approach to facilitate UTE MRI methods for patient-based imaging. The proposed approach employs a k-means algorithm in kernel space for pair-wise feature clustering and imposes image domain continuous regularization, coined as continuous kernel k-means (CKKM). The high-order CKKM algorithm was simplified through upper bound relaxation and solved within an iterative continuous max-flow framework. We combined the CKKM with U-net and atlas-based approaches and comprehensively evaluated the performance on 100 images from 25 patients with asthma and bronchial pulmonary dysplasia enrolled at Robarts Research Institute (Western University, London, Canada) and Centre Hospitalier Universitaire (Sainte-Justine, Montreal, Canada). For U-net, we trained the network five times on a mixture of five different images with under-annotations and applied the model to 64 images from the two centres. We also trained a U-net on five images with full and brush annotations from one centre, and tested the model on 32 images from the other centre. For an atlas-based approach, we employed three atlas images to segment 64 target images from the two centres through straightforward atlas registration and label fusion. We applied the CKKM algorithm to the baseline U-net and atlas outputs and refined the initial segmentation through multi-volume image fusion. The integration of CKKM substantially improved baseline results and yielded, with minimal computational cost, segmentation accuracy, and precision that were greater than some state-of-the-art deep learning models and similar to experienced observer manual segmentation. This suggests that deep learning and atlas-based approaches may be utilized to segment UTE MRI datasets using relatively small training datasets with under-annotations.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted , Lung/diagnostic imaging
3.
Med Phys ; 44(5): 1718-1733, 2017 May.
Article in English | MEDLINE | ID: mdl-28206676

ABSTRACT

PURPOSE: Recent pulmonary imaging research has revealed that in patients with chronic obstructive pulmonary disease (COPD) and asthma, structural and functional abnormalities are spatially heterogeneous. This novel information may help optimize treatment in individual patients, monitor interventional efficacy, and develop new treatments. Moreover, by automating the measurement of regional biomarkers for the 19 different anatomical lung segments, there is an opportunity to embed imaging biomarkers into clinically acceptable clinical workflows and improve lung disease clinical care. Therefore, to exploit the regional structure-function information provided by thoracic imaging, and as a first step toward this goal, our objective was to develop a fully automated registration pipeline for thoracic x-ray computed tomography (CT) and inhaled gas functional magnetic resonance imaging (MRI) whole lung and segmental structure-function biomarkers. METHODS: Thirty-five patients including 15 severe, poorly controlled asthmatics and 20 COPD patients [classified according to the global initiative for chronic obstructive lung disease (GOLD) criteria)] provided written informed consent to a study protocol approved by Health Canada and underwent pulmonary function tests, MRI, and CT during a single 2-hour visit. Using this diverse patient dataset, we developed and evaluated a joint deformable registration approach to simultaneously coregister CT with both 1 H and 3 He MRI by enforcing the similarity of the deformation fields from the two individual registrations. We derived a simpler model that was equivalent to the original challenging optimization problem through variational analysis and the simpler model gave rise to an efficient numerical solver that was parallelized on a graphics processing unit. The coregistered CT-3 He MRI and whole lung/segmental lung masks were used to generate whole lung and segmental 3 He MRI ventilation defect percent (VDP). To estimate fiducial localization reproducibility, a single observer manually identified 109 pairs of CT and 3 He MRI fiducials for 35 patient images on five separate occasions and determined the fiducial localization error (FLE). CT-3 He MRI registration accuracy was evaluated using the target registration error (TRE). Whole lung VDP generated using the algorithm was compared with VDP generated using a previously validated semiautomated approach and computational efficiency was evaluated using run time. RESULTS: In 35 patients including 15 with severe asthma and 20 with COPD, mean forced expiratory volume in 1 s (FEV1 ) was 63±24%pred and FEV1 /forced vital capacity (FVC) was 54 ± 17%. FLE was 0.16 mm and 0.34 mm for 3 He MRI and CT, respectively. TRE was 4.5 ± 2.0 mm, 4.0 ± 1.7 mm, 4.8 ± 2.3 mm for asthma, COPD GOLD II, and GOLD III groups, respectively, with a mean of 4.4 ± 2.0 mm for the entire dataset. TRE was significantly improved for joint CT-1 H/3 He MRI registration compared with CT-1 H MRI rigid registration (P < 0.0001). Whole lung VDP generated using the pipeline was not significantly different (P = 0.37) compared to a semiautomated method with which it was strongly correlated (r = 0.93, P < 0.0001). The fully automated pipeline required 11 ± 0.4 min to generate whole lung and segmental VDP. CONCLUSIONS: For a diverse group of patients with COPD and asthma, whole lung and segmental VDP was measured using an automated lung image analysis pipeline which provides a way to incorporate lung functional biomarkers into clinical research and patient care.


Subject(s)
Magnetic Resonance Imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Tomography, X-Ray Computed , Canada , Helium , Humans , Male , Reproducibility of Results
4.
BMC Cancer ; 14: 934, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25496482

ABSTRACT

BACKGROUND: Although radiotherapy is a key component of curative-intent treatment for locally advanced, unresectable non-small cell lung cancer (NSCLC), it can be associated with substantial pulmonary toxicity in some patients. Current radiotherapy planning techniques aim to minimize the radiation dose to the lungs, without accounting for regional variations in lung function. Many patients, particularly smokers, can have substantial regional differences in pulmonary ventilation patterns, and it has been hypothesized that preferential avoidance of functional lung during radiotherapy may reduce toxicity. Although several investigators have shown that functional lung can be identified using advanced imaging techniques and/or demonstrated the feasibility and theoretical advantages of avoiding functional lung during radiotherapy, to our knowledge this premise has never been tested via a prospective randomized clinical trial. METHODS/DESIGN: Eligible patients will have Stage III NSCLC with intent to receive concurrent chemoradiotherapy (CRT). Every patient will undergo a pre-treatment functional lung imaging study using hyperpolarized 3He MRI in order to identify the spatial distribution of normally-ventilated lung. Before randomization, two clinically-approved radiotherapy plans will be devised for all patients on trial, termed standard and avoidance. The standard plan will be designed without reference to the functional state of the lung, while the avoidance plan will be optimized such that dose to functional lung is as low as reasonably achievable. Patients will then be randomized in a 1:1 ratio to receive either the standard or the avoidance plan, with both the physician and the patient blinded to the randomization results. This study aims to accrue a total of 64 patients within two years. The primary endpoint will be a pulmonary quality of life (QOL) assessment at 3 months post-treatment, measured using the functional assessment of cancer therapy-lung cancer subscale. Secondary endpoints include: pulmonary QOL at other time-points, provider-reported toxicity, overall survival, progression-free survival, and quality-adjusted survival. DISCUSSION: This randomized, double-blind trial will comprehensively assess the impact of functional lung avoidance on pulmonary toxicity and quality of life in patients receiving concurrent CRT for locally advanced NSCLC. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT02002052.


Subject(s)
Carcinoma, Non-Small-Cell Lung/therapy , Chemoradiotherapy/methods , Lung Neoplasms/radiotherapy , Lung/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Carcinoma, Non-Small-Cell Lung/pathology , Chemoradiotherapy/adverse effects , Double-Blind Method , Humans , Lung Neoplasms/pathology , Magnetic Resonance Imaging/methods , Precision Medicine , Prospective Studies , Quality of Life , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...