Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 227(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38563306

ABSTRACT

Large and stout snakes commonly consume large prey and use rectilinear crawling; yet, whether body wall distention after feeding impairs rectilinear locomotion is poorly understood. After eating large prey (30-37% body mass), all Boa constrictor tested could perform rectilinear locomotion in the region with the food bolus despite a greatly increased distance between the ribs and the ventral skin that likely lengthens muscles relevant to propulsion. Unexpectedly, out of 11 kinematic variables, only two changed significantly (P<0.05) after feeding: cyclic changes in snake height increased by more than 1.5 times and the longitudinal movements of the ventral skin relative to the skeleton decreased by more than 25%. Additionally, cyclic changes in snake width suggest that the ribs are active and mobile during rectilinear locomotion, particularly in fed snakes, but also in unfed snakes. These kinematic changes suggest that rectilinear actuators reorient more vertically and undergo smaller longitudinal excursions following large prey ingestion, both of which likely act to reduce elongation of these muscles that may otherwise experience substantial strain.


Subject(s)
Boidae , Locomotion , Predatory Behavior , Animals , Biomechanical Phenomena , Locomotion/physiology , Boidae/physiology , Body Size , Eating/physiology
2.
J Exp Biol ; 225(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35325925

ABSTRACT

The evolution of constriction and of large prey ingestion within snakes are key innovations that may explain the remarkable diversity, distribution and ecological scope of this clade, relative to other elongate vertebrates. However, these behaviors may have simultaneously hindered lung ventilation such that early snakes may have had to circumvent these mechanical constraints before those behaviors could evolve. Here, we demonstrate that Boa constrictor can modulate which specific segments of ribs are used to ventilate the lung in response to physically hindered body wall motions. We show that the modular actuation of specific segments of ribs likely results from active recruitment or quiescence of derived accessory musculature. We hypothesize that constriction and large prey ingestion were unlikely to have evolved without modular lung ventilation because of their interference with lung ventilation, high metabolic demands and reliance on sustained lung convection. This study provides a new perspective on snake evolution and suggests that modular lung ventilation evolved during or prior to constriction and large prey ingestion, facilitating snakes' remarkable radiation relative to other elongate vertebrates.


Subject(s)
Boidae , Animals , Boidae/physiology , Lung , Snakes
3.
Sci Rep ; 10(1): 7739, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32398656

ABSTRACT

Most lizards walk and run with a sprawling gait in which the limbs are partly advanced by lateral undulation of the axial skeleton. Ribs and vertebrae are integral to this locomotor mode, but 3D motion of the axial skeleton has not been reported for lizard locomotion. Here, we use XROMM to quantify the relative motions of the vertebrae and ribs during slow treadmill locomotion in three savannah monitor lizards (Varanus exanthematicus) and three Argentine black and white tegus (Salvator merianae). To isolate locomotion, we selected strides with no concurrent lung ventilation. Rib rotations can be decomposed into bucket-handle rotation around a dorsoventral axis, pump-handle rotation around a mediolateral axis, and caliper rotations around a craniocaudal axis. During locomotion, every rib measured in both species rotated substantially around its costovertebral joint (8-17 degrees, summed across bucket, pump and caliper rotations). In all individuals from both species, the middle ribs rotated cranially through bucket and pump-handle motion during the propulsive phase of the ipsilateral forelimb. Axial kinematics during swing phase of the ipsilateral forelimb were mirror images of the propulsive phase. Although further work is needed to establish what causes these rib motions, active contraction of the hypaxial musculature may be at least partly responsible. Unilateral locomotor rib movements are remarkably similar to the bilateral pattern used for lung ventilation, suggesting a new hypothesis that rib motion during locomotion may have been an exaptation for the evolution of costal aspiration breathing in stem amniotes.


Subject(s)
Biological Evolution , Lizards/physiology , Ribs/chemistry , Animals , Biomechanical Phenomena , Gait , Lizards/anatomy & histology , Locomotion , Respiration , Ribs/anatomy & histology , Spine/anatomy & histology , Spine/chemistry
4.
Integr Comp Biol ; 60(1): 215-231, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32396605

ABSTRACT

Locomotion in most tetrapods involves coordinated efforts between appendicular and axial musculoskeletal systems, where interactions between the limbs and the ground generate vertical (GV), horizontal (GH), and mediolateral (GML) ground-reaction forces that are transmitted to the axial system. Snakes have a complete absence of external limbs and represent a fundamental shift from this perspective. The axial musculoskeletal system of snakes is their primary structure to exert, transmit, and resist all motive and reaction forces for propulsion. Their lack of limbs makes them particularly dependent on the mechanical interactions between their bodies and the environment to generate the net GH they need for forward locomotion. As organisms that locomote on their bellies, the forces that enable the various modes of snake locomotion involve two important structures: the integument and the ribs. Snakes use the integument to contact the substrate and produce a friction-reservoir that exceeds their muscle-induced propulsive forces through modulation of scale stiffness and orientation, enabling propulsion through variable environments. XROMM work and previous studies suggest that the serially repeated ribs of snakes change their cross-sectional body shape, deform to environmental irregularities, provide synergistic stabilization for other muscles, and differentially exert and transmit forces to control propulsion. The costovertebral joints of snakes have a biarticular morphology, relative to the unicapitate costovertebral joints of other squamates, that appears derived and not homologous with the ancestral bicapitate ribs of Amniota. Evidence suggests that the biarticular joints of snakes may function to buttress locomotor forces, similar to other amniotes, and provide a passive mechanism for resisting reaction forces during snake locomotion. Future comparisons with other limbless lizard taxa are necessary to tease apart the mechanics and mechanisms that produced the locomotor versatility observed within Serpentes.


Subject(s)
Extinction, Biological , Locomotion , Snakes/physiology , Animals , Biomechanical Phenomena , Ribs/anatomy & histology , Ribs/physiology
5.
J Exp Biol ; 222(Pt 24)2019 12 12.
Article in English | MEDLINE | ID: mdl-31767737

ABSTRACT

Pectoral and pelvic girdle rotations play a substantial role in enhancing stride length across diverse tetrapod lineages. However, the pectoral and pelvic girdle attach the limbs to the body in different ways and may exhibit dissimilar functions, especially during locomotion in disparate environments. Here, we tested for functional differences between the forelimb and hindlimb of the freshwater turtle Pseudemys concinna during walking and swimming using X-ray reconstruction of moving morphology (XROMM). In doing so, we also tested the commonly held notion that the shell constrains girdle motion in turtles. We found that the pectoral girdle exhibited greater rotations than the pelvic girdle on land and in water. Additionally, pelvic girdle rotations were greater on land than in water, whereas pectoral girdle rotations were similar in the two environments. These results indicate that although the magnitude of pelvic girdle rotations depends primarily on whether the weight of the body must be supported against gravity, the magnitude of pectoral girdle rotations likely depends primarily on muscular activity associated with locomotion. Furthermore, the pectoral girdle of turtles rotated more than has been observed in other taxa with sprawling postures, showing an excursion similar to that of mammals (∼38 deg). These results suggest that a rigid axial skeleton and internally positioned pectoral girdle have not constrained turtle girdle function, but rather the lack of lateral undulations in turtles and mammals may contribute to a functional convergence whereby the girdle acts as an additional limb segment to increase stride length.


Subject(s)
Forelimb/physiology , Hindlimb/physiology , Swimming , Turtles/physiology , Walking , Animals , Male , Pelvis , Rotation
6.
J Exp Biol ; 221(Pt 22)2018 11 16.
Article in English | MEDLINE | ID: mdl-30257921

ABSTRACT

The structures and functions of the vertebrate lung and trunk are linked through the act of ventilation, but the connections between these structures and functions are poorly understood. We used X-ray reconstruction of moving morphology (XROMM) to measure rib kinematics during lung ventilation in three savannah monitor lizards (Varanus exanthematicus). All of the dorsal ribs, including the floating ribs, contributed to ventilation; the magnitude and kinematic pattern showed no detectable cranial-to-caudal gradient. The true ribs acted as two rigid bodies connected by flexible cartilage, with the vertebral rib and ventromedial shaft of each sternal rib remaining rigid and the cartilage between them forming a flexible intracostal joint. Rib rotations can be decomposed into bucket handle rotation around a dorsoventral axis, pump handle rotation around a mediolateral axis and caliper motion around a craniocaudal axis. Dorsal rib motion was dominated by roughly equal contributions of bucket and pump rotation in two individuals and by bucket rotation in the third individual. The recruitment of floating ribs during ventilation in monitor lizards is strikingly different from the situation in iguanas, where only the first few true ribs contribute to breathing. This difference may be related to the design of the pulmonary system and life history traits in these two species. Motion of the floating ribs may maximize ventilation of the caudally and ventrolaterally positioned compliant saccular chambers in the lungs of varanids, while restriction of ventilation to a few true ribs may maximize crypsis in iguanas.


Subject(s)
Lizards/physiology , Lung/physiology , Respiration , Ribs/physiology , Animals , Radiography/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...