Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20220206, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37807686

ABSTRACT

We present new 14C results measured on subfossil Scots Pines recovered in the eroded banks of the Drouzet watercourse in the Southern French Alps. About 400 new 14C ages have been analysed on 15 trees sampled at annual resolution. The resulting Δ14C record exhibits an abrupt spike occurring in a single year at 14 300-14 299 cal yr BP and a century-long event between 14 and 13.9 cal kyr BP. In order to identify the causes of these events, we compare the Drouzet Δ14C record with simulations of Δ14C based on the 10Be record in Greenland ice used as an input of a carbon cycle model. The correspondence with 10Be anomalies allows us to propose the 14.3 cal kyr BP event as a solar energetic particle event. By contrast, the 14 cal kyr BP event lasted about a century and is most probably a common Maunder-type solar minimum linked to the modulation of galactic cosmic particles by the heliomagnetic field. We also discuss and speculate about the synchroneity and the possible causes of the 14 cal kyr BP event with the brief cold phase called Older Dryas, which separates the Bølling and Allerød millennium-long warm phases of the Late Glacial period. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

2.
Anal Chem ; 83(6): 2038-45, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21338118

ABSTRACT

Mortars represent a class of building and art materials that are widespread at archeological sites from the Neolithic period on. After about 50 years of experimentation, the possibility to evaluate their absolute chronology by means of radiocarbon ((14)C) remains still uncertain. With the use of a simplified mortar production process in the laboratory environment, this study shows the overall feasibility of a novel physical pretreatment for the isolation of the atmospheric (14)CO(2) (i.e., binder) signal absorbed by the mortars during their setting. This methodology is based on the assumption that an ultrasonic attack in liquid phase isolates a suspension of binder carbonates from bulk mortars. Isotopic ((13)C and (14)C), % C, X-ray diffractometry (XRD), and scanning electron microscopy (SEM) analyses were performed to characterize the proposed methodology. The applied protocol allows suppression of the fossil carbon (C) contamination originating from the incomplete burning of the limestone during the quick lime production, providing unbiased dating for "laboratory" mortars produced operating at historically adopted burning temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...