Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Biol ; 121(6-7): 550-560, 2017.
Article in English | MEDLINE | ID: mdl-28606350

ABSTRACT

Armillaria ostoyae (sometimes named Armillaria solidipes) is a fungal species causing root diseases in numerous coniferous forests of the northern hemisphere. The importance of sexual spores for the establishment of new disease centres remains unclear, particularly in the large maritime pine plantations of southwestern France. An analysis of the genetic diversity of a local fungal population distributed over 500 ha in this French forest showed genetic recombination between genotypes to be frequent, consistent with regular sexual reproduction within the population. The estimated spatial genetic structure displayed a significant pattern of isolation by distance, consistent with the dispersal of sexual spores mostly at the spatial scale studied. Using these genetic data, we inferred an effective density of reproductive individuals of 0.1-0.3 individuals/ha, and a second moment of parent-progeny dispersal distance of 130-800 m, compatible with the main models of fungal spore dispersal. These results contrast with those obtained for studies of A. ostoyae over larger spatial scales, suggesting that inferences about mean spore dispersal may be best performed at fine spatial scales (i.e. a few kilometres) for most fungal species.


Subject(s)
Armillaria/classification , Armillaria/genetics , Genetic Variation , Plant Diseases/microbiology , Tracheophyta/microbiology , Armillaria/isolation & purification , Forests , France , Molecular Typing , Mycological Typing Techniques , Phylogeography
2.
PeerJ ; 4: e2656, 2016.
Article in English | MEDLINE | ID: mdl-27833817

ABSTRACT

BACKGROUND: Dispersal events between habitat patches in a landscape mosaic can structure ecological communities and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal events between vineyard and forest patches shape foliar fungal communities. We hypothesized that these communities homogenize between habitats over the course of the growing season, particularly along habitat edges, because of aerial dispersal of spores. METHODS: We monitored the richness and composition of foliar and airborne fungal communities over the season, along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing of the Internal Transcribed Spacer 2 (ITS2) region. RESULTS: In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal communities in grapevine drastically decreased over the growing season, in contrast to that of forest trees. The composition of airborne communities did not differ between habitats. The composition of oak foliar fungal communities change between forest edge and centre. DISCUSSION: These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the microclimate and the agricultural practices play a greater role, and might account for the differentiation of foliar fugal communities between habitats.

3.
PLoS One ; 11(5): e0155344, 2016.
Article in English | MEDLINE | ID: mdl-27177029

ABSTRACT

Quercus robur and Q. petraea are major European forest tree species. They have been affected by powdery mildew caused by Erysiphe alphitoides for more than a century. This fungus is a biotrophic foliar pathogen that diverts photosynthetate from the plant for its own nutrition. We used a dendrochronological approach to investigate the effects of different levels of infection severity on the radial growth of young oak trees. Oak infection was monitored at individual tree level, at two sites in southwestern France, over a five-year period (2001-2005). Mean infection severity was almost 75% (infected leaf area) at the end of the 2001 growing season, at both sites, but only about 40% in 2002, and 8%, 5% and 2% in 2003, 2004 and 2005, respectively. Infection levels varied considerably between trees and were positively related between 2001 and 2002. Increment cores were taken from each tree to assess annual ring widths and increases in basal area. Annual radial growth was standardised to take the effect of tree size into account. Annual standardised radial growth was significantly and negatively correlated with infection severity in the same year, for both 2001 and 2002, and at both sites. The decrease in growth reached 70-90% for highly infected trees. The earlywood width was poorly correlated with infection severity, but the proportion of latewood in tree rings was lower in highly infected trees (60%) than in less heavily infected trees (85%). Infection in 2001 and 2002 was found to have a cumulative effect on radial growth in these years, together with a delayed effect detectable in 2003. Thus, even non-lethal pathogens like powdery mildew can have a significant impact on tree functioning. This impact should be taken into account in growth and yield models, to improve predictions of forest net primary production.


Subject(s)
Ascomycota , Plant Diseases/microbiology , Quercus/growth & development , Quercus/microbiology , France , Plant Leaves/microbiology
4.
New Phytol ; 196(2): 510-519, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22934891

ABSTRACT

Little is known about the potential effect of climate warming on phyllosphere fungi, despite their important impact on the dynamics and diversity of plant communities. The structure of phyllosphere fungal assemblages along elevation gradients may provide information about this potential effect, because elevation gradients correspond to temperature gradients over short geographic distances. We thus investigated variations in the composition of fungal assemblages inhabiting the phyllosphere of European beech (Fagus sylvatica) at four sites over a gradient of 1000 m of elevation in the French Pyrénées Mountains, by using tag-encoded 454 pyrosequencing. Our results show that the composition of fungal assemblages varied significantly between elevation sites, in terms of both the relative abundance and the presence-absence of species, and that the variations in assemblage composition were well correlated with variations in the average temperatures. Our results therefore suggest that climate warming might alter both the incidence and the abundance of phyllosphere fungal species, including potential pathogens. For example, Mycosphaerella punctiformis, a causal agent of leaf spots, showed decreasing abundance with elevation and might therefore shift to higher elevations in response to warming.


Subject(s)
Altitude , Ecosystem , Fagus/microbiology , Fungi/physiology , Plant Leaves/microbiology , Climate , France , Linear Models , Molecular Sequence Data , Multivariate Analysis , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...