Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 16168, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36171330

ABSTRACT

Among the materials that might be manufactured with laser powder bed fusion (LPBF), one can highlight maraging steels, with excellent weldability, strength and fracture toughness. However, the effects of the processing parameters and the mechanisms governing the as-built texture are not clear yet. A recent publication showed a low texture index in the prior austenite, in contrast to other alloys subjected to LPBF with the same strategy. Authors suggested several hypotheses, although no conclusions were drawn. This work aims to investigate these findings by using a 300 maraging steel processed under different conditions, i.e. different printer, powder layer thickness and laser emission mode. To do so, X-Ray Diffraction, Electron Backscattered Diffraction and Scanning Electron Microscopy have been used. Results show that the heat treatment intrinsic to the LPBF process does not affect the prior austenite grains, whose texture and morphology remain unchanged throughout the process. Also, for the studied ranges, the microstructure texture is not related to the powder layer thickness or to the laser emission mode, although it could be affected by the laser power or the scan strategy. Finally, a low degree of variant selection has been observed, where the selected variants are those that contribute to a martensite cubic rotated texture.

2.
Sci Rep ; 10(1): 487, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31949280

ABSTRACT

Nano-scale investigations of bainitic structures formed at temperatures below 350 °C have shown that the bainitic ferrite lattice is super-saturated in carbon. A high density of intrinsic defects would be playing a part in the carbon-supersaturation levels detected. In this work, the role of C-vacancy complexes on carbon-supersaturation in low temperature bainite is investigated by means of Positron Annihilation Spectroscopy. Results reveal the presence of a significant amount of monovacancies in the structures that plays an important role on the formation of carbon clusters in the ferrite lattice of nano-scale bainitic structures.

3.
Materials (Basel) ; 10(7)2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28773104

ABSTRACT

Fe-based oxide dispersion strengthened (ODS) steels are oriented to applications where high operating temperatures and good corrosion resistance is paramount. However, their use is compromised by their fracture toughness, which is lower than other competing ferritic-martenstic steels. In addition, the route required in manufacturing these alloys generates texture in the material, which induces a strong anisotropy in properties. The V-notched Charpy tests carried out on these alloys, to evaluate their impact toughness, reveal that delaminations do not follow the path that would be expected. There are many hypotheses about what triggers these delaminations, but the most accepted is that the joint action of particles in the grain boundaries, texture induced in the manufacturing process, and the actual microstructure of these alloys are responsible. In this paper we focused on the actual role of crystallographic texture on impact toughness in these materials. A finite elements simulation is carried out to solely analyze the role of texture and eliminate other factors, such as grain boundaries and the dispersed particles. The work allows us to conclude that crystallographic texture plays an important role in the distribution of stresses in the Charpy specimens. The observed delaminations might be explained on the basis that the crack in the grain, causing the delamination, is directly related to the shear stresses τ12 on both sides of the grain boundary, while the main crack propagation is a consequence of the normal stress to the crack.

4.
Materials (Basel) ; 9(8)2016 Jul 29.
Article in English | MEDLINE | ID: mdl-28773764

ABSTRACT

The ductile-to-brittle transition (DBT) behavior of two similar Fe-Cr-Al oxide dispersion strengthened (ODS) stainless steels was analyzed following the Cottrell-Petch model. Both alloys were manufactured by mechanical alloying (MA) but by different forming routes. One was manufactured as hot rolled tube, and the other in the form of hot extruded bar. The two hot forming routes considered do not significantly influence the microstructure, but cause differences in the texture and the distribution of oxide particles. These have little influence on tensile properties; however, the DBT temperature and the upper shelf energy (USE) are significantly affected because of delamination orientation with regard to the notch plane. Whereas in hot rolled material the delaminations are parallel to the rolling surface, in the hot extruded material, they are randomly oriented because the material is transversally isotropic.

5.
Materials (Basel) ; 9(12)2016 Dec 14.
Article in English | MEDLINE | ID: mdl-28774131

ABSTRACT

The goal of this paper is to analyse the effect of adding Al on the non-steady pearlite growth occurring in a Fe-C-Mn system. The results are discussed in terms of the partitioning of elements across the austenite/ferrite and austenite/cementite interfaces, and the modification of the pearlite driving force related to the change in carbon activity in austenite.

SELECTION OF CITATIONS
SEARCH DETAIL
...