Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39012076

ABSTRACT

Digital ion trap technology is an alternate method for driving quadrupole ion traps and mass filters using variable frequency, fixed amplitude RF square waves in place of variable amplitude, fixed frequency RF sine waves. This technique offers some advantages such as an increase in the high mass analysis range by varying frequency and lower overall voltage requirements. Here, we present a complex square waveform developed for resonant parametric excitation in a quadrupole linear ion trap. Unlike traditional resonance methods, the driving RF square wave and auxiliary square wave are coupled using the same digital circuitry without the need for transformer coupling. In this work, we use this complex waveform to selectively excite the first order parametric resonances of ion motion. The square parametric excitation method presented here employs a simple and repetitive circuit design consisting of a low-voltage waveform generator followed by a series of high-voltage MOSFET switches. This design allows for resonance methods to be easily implemented in the all-digital quadrupole. The complex square waveform can perform the same useful functions as sine wave auxiliary signals, such as selective mass elimination and mass isolation. We also demonstrate that the mass resolution performance and S/N of our digital mass spectrometer is improved by applying the complex square waveform during ion ejection.

2.
J Am Soc Mass Spectrom ; 30(12): 2584-2593, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31713174

ABSTRACT

Ambient ionization techniques provide a way to sample materials via creation of ions in the air. However, transferring and focusing of these ions is typically done in the reduced pressure environment of the mass spectrometer. Spray-based ambient ionization sources require relatively large distances between the source and mass spectrometer inlet for effective desolvation, resulting in a small fraction of the ions being collected. To increase the efficiency of ion transfer from atmosphere to vacuum, 3D-printed focusing devices made of conductive carbon nanotube doped polymers have been designed and evaluated for ion focusing in air. Three main classes of electrodes are considered: (i) conic section electrodes (conical, ellipsoidal, and cylindrical), (ii) simple conductive and non-conductive apertures, and (iii) electrodes with complex geometries (straight, chicane, and curved). Simulations of ion trajectories performed using the statistical diffusion simulation (SDS) model in SIMION showed a measure of agreement with experiment. Cross-sectional images of ion beams were captured using an ion detecting charge-coupled device (IonCCD). After optimization, the best arrangements of electrodes were coupled to an Agilent Ultivo triple quadrupole to record mass spectra. Observations suggest that electrode geometry strongly influences ion trajectories in air. Non-conductive electrodes also assisted in focusing, due to charge buildup from ion deposition. We also observed minimal spreading of the ion packet after exiting the focusing electrodes indicating that atmospheric collisions do not reduce collimation of the beam. The study suggests that high pressures need not be viewed as a hindrance to ion transport, but as a potentially useful force.

3.
J Am Soc Mass Spectrom ; 30(10): 2144-2151, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31392703

ABSTRACT

Suzuki cross-coupling is a widely performed reaction, typically using metal catalysts under heated conditions. Acceleration of the Suzuki cross-coupling reaction has been previously explored in microdroplets using desorption electrospray ionization mass spectrometry (DESI-MS). Building upon previous work, presented here is the use of a high-throughput DESI-MS screening system to identify optimal reaction conditions. Multiple reagents, bases, and stoichiometries were screened using the automated system at rates that approach 10,000 reaction mixture systems per hour. The DESI-MS system utilizes reaction acceleration in microdroplets to allow rapid screening. The results of screening of an array of reaction mixtures using this technique are presented as product ion images via standard MS imaging software, facilitating quick readout. Instructive comparisons are provided with another method of generating droplets for reaction acceleration-the Leidenfrost technique. Acceleration factors greater than 200 were measured for brominated substrates, paralleling the DESI-MS results. Acceleration factors dropped to near unity with highly substituted pyridines, attributable to a steric effect. The reaction proceeded in the absence of a base in Leidenfrost droplets although no product formation was seen without base in the bulk or in the DESI-MS screening experiments. These differences between Leidenfrost chemistry and the bulk and in droplets formed in high-throughput DESI are tentatively attributed to extremes of pH associated with the surfaces of Leidenfrost droplets.

SELECTION OF CITATIONS
SEARCH DETAIL
...