Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Org Chem ; 87(15): 10062-10072, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35880953

ABSTRACT

A transannular approach has been developed for the construction of pyrrolo[1,2-b]isoquinolinones starting from benzo-fused nine-membered enelactams. This process takes place in the presence of a halogenating agent and under Brønsted acid catalysis and proceeds via a transannular amidohalogenation, followed by elimination. The reaction has been found to be wide in scope, enabling the formation of a variety of tricyclic products in good overall yield, regardless of the substitution pattern in the initial lactam substrate. The reaction has also been applied to the total synthesis of a reported topoisomerase I inhibitor and to the formal synthesis of rosettacin. Further extension of this methodology allows the preparation of 10-iodopyrrolo[1,2-b]isoquinolinones by using an excess of halogenating agent and these compounds can be further manipulated through standard Suzuki coupling chemistry into a variety of 10-aryl-substituted pyrrolo[1,2-b]isoquinolinones.


Subject(s)
Catalysis
2.
J Org Chem ; 87(1): 693-707, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34928602

ABSTRACT

The catalyzed desymmetrizative ring expansion of alkenylcyclobutanols promoted by halofunctionalization of the alkene moiety with N-bromosuccinimide has been experimentally and computationally studied. The reaction yields highly enantioenriched cyclopentanones bearing two all-carbon quaternary stereocenters, one of them being generated in the rearrangement of the cyclobutane ring and the other by enantioselective desymmetrization. The reaction is competitive with the formation of a spiroepoxide, but it turns completely selective toward the cyclopentanone when a chiral bisphosphonium magnesium salt is employed as a catalyst. Mechanistic studies support the formation of an ion pair leading to a complex with only a unit of phosphoric acid, which is the resting state of the catalytic cycle. Calculations reproduce in an excellent way the observed reactivity and predict the effect exerted by the substituents of the aromatic ring linked to the double bond. The computational studies also revealed the reaction as a highly asynchronous concerted process taking place as one kinetic step but in two stages: (i) halogenation of the double bond and (ii) rearrangement of the cyclobutane. No intermediates are present in the reaction as energy minima. The experimental scope of the reaction further confirms the predictions for the observed reactivity and selectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...