Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 12(1)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38251000

ABSTRACT

Biocides used in antifouling (AF) paints, such as 4,5-dichlorine-2-n-octyl-4-isothiazole-3-one (DCOIT), can gradually leach into the environment. Some AF compounds can persist in the marine environment and cause harmful effects to non-target organisms. Nanoengineered materials, such as mesoporous silica nanocapsules (SiNCs) containing AF compounds, have been developed to control their release rate and reduce their toxicity to aquatic organisms. This study aimed to evaluate the acute toxicity of new nanoengineered materials, SiNC-DCOIT and a silver-coated form (SiNC-DCOIT-Ag), as well as the free form of DCOIT and empty nanocapsules (SiNCs), on the sun coral Tubastraea coccinea. T. coccinea is an invasive species and can be an alternative test organism for evaluating the risks to native species, as most native corals are currently threatened. The colonies were collected from the Alcatrazes Archipelago, SP, Brazil, and acclimatized to laboratory conditions. They were exposed for 96 h to different concentrations of the tested substances: 3.33, 10, 33, and 100 µg L-1 of free DCOIT; 500, 1000, 2000, and 4000 µg L-1 of SiNC; and 74.1, 222.2, 666.7, and 2000 µg L-1 of SiNC-DCOIT and SiNC-DCOIT-Ag. The test chambers consisted of 500 mL flasks containing the test solutions, and the tests were maintained under constant aeration, a constant temperature of 23 ± 2 °C, and photoperiod of 12 h:12 h (light/dark). At the end of the experiments, no lethal effect was observed; however, some sublethal effects were noticeable, such as the exposure of the skeleton in most of the concentrations and replicates, except for the controls, and embrittlement at higher concentrations. Adults of T. coccinea were considered slightly sensitive to the tested substances. This resistance may indicate a greater capacity for proliferation in the species, which is favored in substrates containing antifouling paints, to the detriment of the native species.

2.
Anim Microbiome ; 2(1): 29, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-33499978

ABSTRACT

BACKGROUND: Commonly known as sun-coral, Tubastraea tagusensis is an azooxanthellate scleractinian coral that successfully invaded the Southwestern Atlantic causing significant seascape changes. Today it is reported to over 3500 km along the Brazilian coast, with several rocky shores displaying high substrate coverage. Apart from its singular invasiveness capacity, the documentation and, therefore, understanding of the role of symbiotic microorganisms in the sun-coral invasion is still scarce. However, in general, the broad and constant relationship between corals and microorganisms led to the development of co-evolution hypotheses. As such, it has been shown that the microbial community responds to environmental factors, adjustment of the holobiont, adapting its microbiome, and improving the hosts' fitness in a short space of time. Here we describe the microbial community (i.e. Bacteria) associated with sun-coral larvae and adult colonies from a locality displaying a high invasion development. RESULTS: The usage of high throughput sequencing indicates a great diversity of Bacteria associated with T. tagusensis, with Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, and Firmicutes corresponding to the majority of the microbiome in all samples. However, T. tagusensis' microbial core consists of only eight genera for colonies, and, within them, three are also present in the sequenced larvae. Overall, the microbiome from colonies sampled at different depths did not show significant differences. The microbiome of the larvae suggests a partial vertical transfer of the microbial core in this species. CONCLUSION: Although diverse, the microbiome core of adult Tubastraea tagusensis is composed of only eight genera, of which three are transferred from the mother colony to their larvae. The remaining bacteria genera are acquired from the seawater, indicating that they might play a role in the host fitness and, therefore, facilitate the sun-coral invasion in the Southwestern Atlantic.

3.
PeerJ ; 5: e3873, 2017.
Article in English | MEDLINE | ID: mdl-29018611

ABSTRACT

Although the invasive azooxanthellate corals Tubastraea coccinea and T. tagusensis are spreading quickly and outcompeting native species in the Atlantic Ocean, there is little information regarding the genetic structure and path of introduction for these species. Here we present the first data on genetic diversity and clonal structure from these two species using a new set of microsatellite markers. High proportions of clones were observed, indicating that asexual reproduction has a major role in the local population dynamics and, therefore, represents one of the main reasons for the invasion success. Although no significant population structure was found, results suggest the occurrence of multiple invasions for T. coccinea and also that both species are being transported along the coast by vectors such as oil platforms and monobouys, spreading these invasive species. In addition to the description of novel microsatellite markers, this study sheds new light into the invasive process of Tubastraea.

4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2911-2, 2016 07.
Article in English | MEDLINE | ID: mdl-26119126

ABSTRACT

Dendrophylliidae is one of the few monophyletic families within the Scleractinia that embraces zooxanthellate and azooxanthellate species represented by both solitary and colonial forms. Among the exclusively azooxanthellate genera, Dendrophyllia is reported worldwide from 1 to 1200 m deep. To date, although three complete mitochondrial (mt) genomes from representatives of the family are available, only that from Turbinaria peltata has been formally published. Here we describe the complete nucleotide sequence of the mt genome from Dendrophyllia arbuscula that is 19 069 bp in length and comprises two rDNAs, two tRNAs, and 13 protein-coding genes arranged in the canonical scleractinian mt gene order. No genes overlap, resulting in the presence of 18 intergenic spacers and one of the longest scleractinian mt genome sequenced to date.


Subject(s)
Anthozoa/classification , Anthozoa/genetics , Genome, Mitochondrial , Genomics , Animals , Base Composition , Genes, Mitochondrial , Genome Size , Genomics/methods , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...