Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 24(1): 641, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884859

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS: We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION: The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.


Subject(s)
Gene Expression Regulation, Developmental , MicroRNAs , Humans , Animals , Mice , Cell Differentiation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Intestine, Small/metabolism , Organoids/metabolism
2.
J Hepatol ; 78(5): 998-1006, 2023 05.
Article in English | MEDLINE | ID: mdl-36738840

ABSTRACT

BACKGROUND & AIMS: Drug-induced liver injury (DILI), both intrinsic and idiosyncratic, causes frequent morbidity, mortality, clinical trial failures and post-approval withdrawal. This suggests an unmet need for improved in vitro models for DILI risk prediction that can account for diverse host genetics and other clinical factors. In this study, we evaluated the utility of human liver organoids (HLOs) for high-throughput DILI risk prediction and in an organ-on-chip system. METHODS: HLOs were derived from three separate iPSC lines and benchmarked on two platforms for their ability to model in vitro liver function and identify hepatotoxic compounds using biochemical assays for albumin, ALT, AST, microscopy-based morphological profiling, and single-cell transcriptomics: i) HLOs dispersed in 384-well-formatted plates and exposed to a library of compounds; ii) HLOs adapted to a liver-on-chip system. RESULTS: Dispersed HLOs derived from the three iPSC lines had similar DILI predictive capacity as intact HLOs in a high-throughput screening format, allowing for measurable IC50 values of compound cytotoxicity. Distinct morphological differences were observed in cells treated with drugs exerting differing mechanisms of toxicity. On-chip HLOs significantly increased albumin production, CYP450 expression, and ALT/AST release when treated with known hepatoxic drugs compared to dispersed HLOs and primary human hepatocytes. On-chip HLOs were able to predict the synergistic hepatotoxicity of tenofovir-inarigivir and displayed steatosis and mitochondrial perturbation, via phenotypic and transcriptomic analysis, on exposure to fialuridine and acetaminophen, respectively. CONCLUSIONS: The high-throughput and liver-on-chip systems exhibit enhanced in vivo-like functions and demonstrate the potential utility of these platforms for DILI risk assessment. Tenofovir-inarigivr-associated hepatotoxicity was observed and correlates with the clinical manifestation of DILI observed in patients. IMPACT AND IMPLICATIONS: Idiosyncratic (spontaneous, patient-specific) drug-induced liver injury (DILI) is difficult to study due to the lack of liver models that function as human liver tissue and are adaptable for large-scale drug screening. Human liver organoids grown from patient stem cells respond to known DILI-causing drugs in both a high-throughput and on a physiological "chip" culture system. These platforms show promise for researchers in their use as predictive models for novel drugs before entering clinical trials and as a potential in vitro diagnostic tool. Our findings support further development of patient-derived liver organoid lines and their use in the context of DILI research.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Humans , Liver/metabolism , Hepatocytes/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Organoids , Albumins
3.
JCI Insight ; 8(6)2023 03 22.
Article in English | MEDLINE | ID: mdl-36821371

ABSTRACT

Epithelial organoids derived from intestinal tissue, called enteroids, recapitulate many aspects of the organ in vitro and can be used for biological discovery, personalized medicine, and drug development. Here, we interrogated the cell signaling environment within the developing human intestine to identify niche cues that may be important for epithelial development and homeostasis. We identified an EGF family member, EPIREGULIN (EREG), which is robustly expressed in the developing human crypt. Enteroids generated from the developing human intestine grown in standard culture conditions, which contain EGF, are dominated by stem and progenitor cells and feature little differentiation and no spatial organization. Our results demonstrate that EREG can replace EGF in vitro, and EREG leads to spatially resolved enteroids that feature budded and proliferative crypt domains and a differentiated villus-like central lumen. Multiomic (transcriptome plus epigenome) profiling of native crypts, EGF-grown enteroids, and EREG-grown enteroids showed that EGF enteroids have an altered chromatin landscape that is dependent on EGF concentration, downregulate the master intestinal transcription factor CDX2, and ectopically express stomach genes, a phenomenon that is reversible. This is in contrast to EREG-grown enteroids, which remain intestine like in culture. Thus, EREG creates a homeostatic intestinal niche in vitro, enabling interrogation of stem cell function, cellular differentiation, and disease modeling.


Subject(s)
Epidermal Growth Factor , Intestines , Humans , Epiregulin , Intestinal Mucosa , Cell Differentiation
4.
Ann N Y Acad Sci ; 1518(1): 196-208, 2022 12.
Article in English | MEDLINE | ID: mdl-36177906

ABSTRACT

Complex three-dimensional in vitro organ-like models, or organoids, offer a unique biological tool with distinct advantages over two-dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to recapitulate human physiology and pathology. Significant progress has been made in driving stem cells to differentiate into different organoid types, though several challenges remain. For example, many organoid models suffer from high heterogeneity, and it can be difficult to fully incorporate the complexity of in vivo tissue and organ development to faithfully reproduce human biology. Successfully addressing such limitations would increase the viability of organoids as models for drug development and preclinical testing. On April 3-6, 2022, experts in organoid development and biology convened at the Keystone Symposium "Organoids as Tools for Fundamental Discovery and Translation" to discuss recent advances and insights from this relatively new model system into human development and disease.


Subject(s)
Models, Biological , Organoids , Animals , Humans , Organoids/metabolism , Stem Cells , Models, Animal
5.
Stem Cell Reports ; 17(5): 1138-1153, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35395175

ABSTRACT

NOTCH signaling is a key regulator involved in maintaining intestinal stem cell (ISC) homeostasis and for balancing differentiation. Using single-cell transcriptomics, we observed that OLFM4, a NOTCH target gene present in ISCs, is first expressed at 13 weeks post-conception in the developing human intestine and increases over time. This led us to hypothesize that the requirement for NOTCH signaling is acquired across human development. To test this, we established a series of epithelium-only organoids (enteroids) from different developmental stages and used γ-secretase inhibitors (dibenzazepine [DBZ] or DAPT) to functionally block NOTCH signaling. Using quantitative enteroid-forming assays, we observed a decrease in enteroid forming efficiency in response to γ-secretase inhibition as development progress. When DBZ was added to cultures and maintained during routine passaging, enteroids isolated from tissue before 20 weeks had higher recovery rates following single-cell serial passaging. Finally, bulk RNA sequencing (RNA-seq) analysis 1 day and 3 days after DBZ treatment showed major differences in the transcriptional changes between developing or adult enteroids. Collectively, these data suggest that ISC dependence on NOTCH signaling increases as the human intestine matures.


Subject(s)
Amyloid Precursor Protein Secretases , Receptors, Notch , Stem Cells , Amyloid Precursor Protein Secretases/genetics , Cell Differentiation , Humans , Intestinal Mucosa , Intestines , Organoids , Receptors, Notch/genetics
6.
Cell Rep ; 38(7): 110379, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172130

ABSTRACT

Pluripotent-stem-cell-derived human intestinal organoids (HIOs) model some aspects of intestinal development and disease, but current culture methods do not fully recapitulate the diverse cell types and complex organization of the human intestine and are reliant on 3D extracellular matrix or hydrogel systems, which limit experimental control and translational potential for regenerative medicine. We describe suspension culture as a simple, low-maintenance method for culturing HIOs and for promoting in vitro differentiation of an organized serosal mesothelial layer that is similar to primary human intestinal serosal mesothelium based on single-cell RNA sequencing and histological analysis. Functionally, HIO serosal mesothelium has the capacity to differentiate into smooth-muscle-like cells and exhibits fibrinolytic activity. An inhibitor screen identifies Hedgehog and WNT signaling as regulators of human serosal mesothelial differentiation. Collectively, suspension HIOs represent a three-dimensional model to study the human serosal mesothelium.


Subject(s)
Epithelium/growth & development , Intestines/growth & development , Organoids/growth & development , Serous Membrane/growth & development , Tissue Culture Techniques , Alginates/pharmacology , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Line , Collagen/pharmacology , Drug Combinations , Epithelium/drug effects , Hedgehog Proteins/metabolism , Humans , Intestines/ultrastructure , Laminin/pharmacology , Muscle, Smooth/cytology , Organoids/drug effects , Organoids/ultrastructure , Proteoglycans/pharmacology , Serous Membrane/drug effects , Serous Membrane/ultrastructure , Signal Transduction/drug effects , Suspensions , Wnt Proteins/metabolism
7.
Cell ; 184(12): 3281-3298.e22, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34019796

ABSTRACT

Organs are composed of diverse cell types that traverse transient states during organogenesis. To interrogate this diversity during human development, we generate a single-cell transcriptome atlas from multiple developing endodermal organs of the respiratory and gastrointestinal tract. We illuminate cell states, transcription factors, and organ-specific epithelial stem cell and mesenchyme interactions across lineages. We implement the atlas as a high-dimensional search space to benchmark human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) under multiple culture conditions. We show that HIOs recapitulate reference cell states and use HIOs to reconstruct the molecular dynamics of intestinal epithelium and mesenchyme emergence. We show that the mesenchyme-derived niche cue NRG1 enhances intestinal stem cell maturation in vitro and that the homeobox transcription factor CDX2 is required for regionalization of intestinal epithelium and mesenchyme in humans. This work combines cell atlases and organoid technologies to understand how human organ development is orchestrated.


Subject(s)
Anatomy, Artistic , Atlases as Topic , Embryonic Development , Endoderm/embryology , Models, Biological , Organoids/embryology , CDX2 Transcription Factor/metabolism , Cell Line , Epidermal Growth Factor/pharmacology , Epithelial Cells/cytology , Female , Gastrulation , Gene Deletion , Gene Expression Regulation, Developmental/drug effects , Humans , Intestines/embryology , Male , Mesoderm/embryology , Middle Aged , Neuregulin-1/metabolism , Organ Specificity , Pluripotent Stem Cells/cytology
8.
Dev Cell ; 54(4): 516-528.e7, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32841595

ABSTRACT

Human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) lack some cellular populations found in the native organ, including vasculature. Using single-cell RNA sequencing (scRNA-seq), we have identified a population of endothelial cells (ECs) present early in HIO differentiation that declines over time in culture. Here, we developed a method to expand and maintain this endogenous population of ECs within HIOs (vHIOs). Given that ECs possess organ-specific gene expression, morphology, and function, we used bulk RNA-seq and scRNA-seq to interrogate the developing human intestine, lung, and kidney in order to identify organ-enriched EC gene signatures. By comparing these gene signatures and validated markers to HIO ECs, we find that HIO ECs grown in vitro share the highest similarity with native intestinal ECs relative to kidney and lung. Together, these data demonstrate that HIOs can co-differentiate a native EC population that is properly patterned with an intestine-specific EC transcriptional signature in vitro.


Subject(s)
Endothelial Cells/metabolism , Intestinal Mucosa/growth & development , Intestines/growth & development , Organ Specificity/genetics , Cell Differentiation/genetics , Cell Line , Gene Expression Regulation/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Intestinal Mucosa/metabolism , Kidney/growth & development , Kidney/metabolism , Lung/growth & development , Lung/metabolism , Organoids/growth & development , Organoids/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , RNA-Seq
9.
Methods Cell Biol ; 159: 143-174, 2020.
Article in English | MEDLINE | ID: mdl-32586441

ABSTRACT

Human intestinal organoids (HIOs) derived from pluripotent stem cells were first described almost a decade ago as a method to differentiate intestinal tissue containing both epithelium and supporting mesenchymal cells. The original protocol documents a directed differentiation approach to first induce definitive endoderm from pluripotent stem cells, followed by hindgut specification, resulting in the self-organization of 3D hindgut spheroids. These hindgut spheroids are then embedded in a basement membrane extracellular matrix (ECM) such as Matrigel and mature into HIOs over about 4 weeks in culture. Since the initial HIO protocol was published, the methods to generate HIOs have been updated over time including revisions to the directed differentiation protocol and implementation of new culture methods for spheroids such as embedding in alginate or polyethylene glycol hydrogels as defined alternatives to Matrigel. Additionally, HIOs have been utilized for new applications such as co-culture with bacteria. This protocol compiles the most up to date information on HIO generation and presents alternative experimental applications.


Subject(s)
Cell Culture Techniques/methods , Intestine, Small/cytology , Intestine, Small/physiology , Organoids/cytology , Alginates/pharmacology , Cell Differentiation/drug effects , Cell Line , Collagen/pharmacology , Drug Combinations , Endoderm/cytology , Humans , Hydrogels/pharmacology , Laminin/pharmacology , Organoids/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Proteoglycans/pharmacology , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects
10.
Development ; 146(8)2019 04 16.
Article in English | MEDLINE | ID: mdl-30992275

ABSTRACT

Organoids are complex three-dimensional in vitro organ-like model systems. Human organoids, which are derived from human pluripotent stem cells or primary human donor tissue, have been used to address fundamental questions about human development, stem cell biology and organ regeneration. Focus has now shifted towards implementation of organoids for biological discovery and advancing existing systems to more faithfully recapitulate the native organ. This work has highlighted significant unknowns in human biology and has invigorated new exploration into the cellular makeup of human organs during development and in the adult - work that is crucial for providing appropriate benchmarks for organoid systems. In this Review, we discuss efforts to characterize human organ cellular complexity and attempts to make organoid models more realistic through co-culture, transplantation and bioengineering approaches.


Subject(s)
Organoids/cytology , Animals , Bioengineering/methods , Coculture Techniques , Humans , Models, Biological , Organogenesis/genetics , Organogenesis/physiology , Organoids/metabolism
11.
Stem Cell Reports ; 12(2): 381-394, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30612954

ABSTRACT

Human intestinal organoids (HIOs) represent a powerful system to study human development and are promising candidates for clinical translation as drug-screening tools or engineered tissue. Experimental control and clinical use of HIOs is limited by growth in expensive and poorly defined tumor-cell-derived extracellular matrices, prompting investigation of synthetic ECM-mimetics for HIO culture. Since HIOs possess an inner epithelium and outer mesenchyme, we hypothesized that adhesive cues provided by the matrix may be dispensable for HIO culture. Here, we demonstrate that alginate, a minimally supportive hydrogel with no inherent cell instructive properties, supports HIO growth in vitro and leads to HIO epithelial differentiation that is virtually indistinguishable from Matrigel-grown HIOs. In addition, alginate-grown HIOs mature to a similar degree as Matrigel-grown HIOs when transplanted in vivo, both resembling human fetal intestine. This work demonstrates that purely mechanical support from a simple-to-use and inexpensive hydrogel is sufficient to promote HIO survival and development.


Subject(s)
Alginates/pharmacology , Hydrogels/pharmacology , Intestines/drug effects , Organoids/drug effects , Pluripotent Stem Cells/drug effects , Animals , Cell Differentiation/drug effects , Cell Line , Collagen/pharmacology , Drug Combinations , Epithelium/drug effects , Extracellular Matrix/drug effects , Humans , Laminin/pharmacology , Mice , Mice, Inbred NOD , Mice, SCID , Proteoglycans/pharmacology , Tissue Engineering/methods
12.
Acta Biomater ; 64: 290-300, 2017 12.
Article in English | MEDLINE | ID: mdl-29030301

ABSTRACT

A fully biodegradable zwitterionic polymer and the corresponding conjugate with paclitaxel (PTX) were synthesized as promising biomaterials. Allyl-functionalized polylactide (PLA) was employed as the precursor of polymer backbones. UV-induced thiol-ene reaction was conducted to conjugate thiol-functionalized sulfobetaine (SB) with the PLA-based backbone. The resulting zwitterionic polymer did not exhibit considerable cytotoxicity. A polymer-drug conjugate was also obtained by thiol-ene reaction of both thiol-functionalized SB and PTX with allyl-functionalized PLA. The conjugate could readily form narrowly-dispersed nanoparticles in aqueous solutions with a volume-average hydrodynamic diameter (Dh,V) of 19.3 ±â€¯0.2 nm. Such a polymer-drug conjugate-based drug delivery system showed full degradability, well-suppressed non-specific interaction with biomolecules, and sustained drug release. In vitro assessments also confirmed the significant anti-cancer efficacy of the conjugate. After 72 h incubation with PLA-SB/PTX containing 10 µg/mL of PTX, the cell viabilities of A549, MCF7, and PaCa-2 cells were as low as 20.0 ±â€¯2.5%, 1.7 ±â€¯1.7%, and 14.8 ±â€¯0.9%, respectively. Both flow cytometry and confocal microscopy suggested that the conjugates could be easily uptaken by A549 cells before the major release of PTX moieties. Overall, this work elucidates promising potentials of biodegradable zwitterionic polymer-based materials in biomedical applications. STATEMENT OF SIGNIFICANCE: The applicability of FDA-approved biodegradable aliphatic polyesters has been significantly restricted because they are hydrophobic and lack functionalities. Recently zwitterionic polymers have emerged as promising hydrophilic biomaterials, but most of the reported zwitterionic polymers are non-biodegradable. This study reports a novel aliphatic polyester-based zwitterionic polymer and the corresponding polymer-drug conjugate. Their aliphatic polyester and zwitterionic components provide them with high enzymatic degradability and low nonspecific interactions with biomolecules, respectively. While the zwitterionic polymer did not show noticeable cytotoxicity, the corresponding polymer-anticancer drug conjugate exhibited acid-sensitive sustained drug release, remarkable effectiveness in killing cancer cells, as well as the ready cellular internalization. This work lays a foundation for the further development of synthetic biodegradable zwitterionic polymer-based materials which potentially may have broad and significant biomedical applications.


Subject(s)
Betaine/analogs & derivatives , Biodegradable Plastics , Neoplasms/drug therapy , Paclitaxel , A549 Cells , Betaine/chemistry , Betaine/pharmacokinetics , Betaine/pharmacology , Biodegradable Plastics/chemistry , Biodegradable Plastics/pharmacokinetics , Biodegradable Plastics/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Humans , MCF-7 Cells , Neoplasms/metabolism , Neoplasms/pathology , Paclitaxel/chemistry , Paclitaxel/pharmacokinetics , Paclitaxel/pharmacology
13.
Top Curr Chem (Cham) ; 375(2): 24, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28176270

ABSTRACT

Recently, co-delivery of siRNA and anticancer drugs has drawn much attention in the treatment of drug-resistant cancers. Drug resistance is exhibited by cancer cells, which limits the efficacy of chemotherapy. When siRNA and anticancer drugs are delivered into cancer cells simultaneously, the siRNA is expected to silence the genes related to drug resistance, decreasing the drug efflux pumps and activating the cell's apoptosis pathways. In a timeframe following the release of siRNA, the accumulation of the co-delivered anti-cancer drug inside of the cancer cells will increase, resulting in promoted chemotherapeutic effects. Several classes of nanocarriers have been designed based on polymers for co-delivery, including surface-modified polymer nanoparticles (NPs), polymer micelles, dendrimers, polymer nanocapsules, polymer-modified liposomes, and polymer-modified silica and gold NPs. Compared with separate delivery, co-delivery showed significant advantages in the treatment of drug-resistant cancers. This review focuses on polymers in the co-delivery of siRNA and anticancer drugs, and summarizes key advances in the recent several years.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Delivery Systems , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Polymers/chemistry , RNA, Small Interfering/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Carriers/chemistry , Gold/chemistry , Humans , Neoplasms/pathology , RNA, Small Interfering/chemistry , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...