Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Aging ; 131: 39-51, 2023 11.
Article in English | MEDLINE | ID: mdl-37572526

ABSTRACT

Age-related abnormalities in phosphodiesterase 11A (PDE11A), which degrades 3',5'-cAMP/cGMP and is enriched in the ventral hippocampus (VHIPP), drive age-related cognitive decline (ARCD) of social memories. Age-related PDE11A4 ectopically accumulates within the membrane compartment and in filamentous structures termed ghost axons. Previous studies show that expressing an isolated PDE11A4-GAF-B binding domain disrupts homodimerization and reverses aging-like PDE11A4 accumulations in vitro. Here, we show that in vivo lentiviral expression of the isolated PDE11A4-GAFB domain in hippocampal CA1 of aged mice reverses age-related PDE11A4 accumulations and ARCD of social transmission of food preference memory (STFP). It also improves 7-day remote long-term memory for social odor recognition without affecting non-social odor recognition. In vitro studies show that disrupting homodimerization does not alter the catalytic activity of PDE11A4 but may reverse age-related decreases in cGMP by relocating PDE11A4 from a cGMP-rich to a cAMP-rich pool independently of other intramolecular relocation signals (PDE11A4-pS162). Altogether, these data suggest that a biologic designed to disrupt PDE11A4 homodimerization may hold therapeutic potential for age-related PDE11A4 proteinopathies.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases , Biological Products , Animals , Mice , 3',5'-Cyclic-GMP Phosphodiesterases/metabolism , Memory, Long-Term , Recognition, Psychology , Cyclic GMP/metabolism , Hippocampus/metabolism , Biological Products/metabolism
2.
Aging Cell ; 21(10): e13687, 2022 10.
Article in English | MEDLINE | ID: mdl-36073342

ABSTRACT

In humans, associative memories are more susceptible to age-related cognitive decline (ARCD) than are recognition memories. Reduced cAMP/cGMP signaling in the hippocampus may contribute to ARCD. Here, we found that both aging and traumatic brain injury-associated dementia increased the expression of the cAMP/cGMP-degrading enzyme phosphodiesterase 11A (PDE11A) in the human hippocampus. Further, age-related increases in hippocampal PDE11A4 mRNA and protein were conserved in mice, as was the increased vulnerability of associative versus recognition memories to ARCD. Interestingly, mouse PDE11A4 protein in the aged ventral hippocampus (VHIPP) ectopically accumulated in the membrane fraction and filamentous structures we term "ghost axons." These age-related increases in expression were driven by reduced exoribonuclease-mediated degradation of PDE11A mRNA and increased PDE11A4-pS117/pS124, the latter of which also drove the punctate accumulation of PDE11A4. In contrast, PDE11A4-pS162 caused dispersal. Importantly, preventing age-related increases in PDE11 expression via genetic deletion protected mice from ARCD of short-term and remote long-term associative memory (aLTM) in the social transmission of food preference assay, albeit at the expense of recent aLTM. Further, mimicking age-related overexpression of PDE11A4 in CA1 of old KO mice caused aging-like impairments in CREB function and remote social-but not non-social-LTMs. RNA sequencing and phosphoproteomic analyses of VHIPP identified cGMP-PKG-as opposed to cAMP-PKA-as well as circadian entrainment, glutamatergic/cholinergic synapses, calcium signaling, oxytocin, and retrograde endocannabinoid signaling as mechanisms by which PDE11A deletion protects against ARCD. Together, these data suggest that PDE11A4 proteinopathies acutely impair signaling in the aged brain and contribute to ARCD of social memories.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases , Cognitive Dysfunction , 3',5'-Cyclic-GMP Phosphodiesterases/genetics , 3',5'-Cyclic-GMP Phosphodiesterases/metabolism , Aged , Animals , Cholinergic Agents/metabolism , Cognitive Dysfunction/metabolism , Endocannabinoids/metabolism , Exoribonucleases/metabolism , Hippocampus/metabolism , Humans , Mice , Oxytocin/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...