Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Cardiovasc Med ; 11: 1309840, 2024.
Article in English | MEDLINE | ID: mdl-38510196

ABSTRACT

Penetrating aortic ulcer (PAU) represents a subset of acute aortic syndromes characterized by high rupture risk and management challenges, particularly in elderly patients with significant comorbidities. This case report showcases a 75-year-old patient with a history of coronary artery bypass graft (CABG) and with multiple PAUs involving the aortic arch, deemed unfit for conventional open surgery. A branched aortic endograft with a pre-cannulated side component for the left subclavian artery (LSA) was employed to preserve the patency of the previous CABG. Two computational fluid dynamics (CFD) simulations and a morphological analysis were performed on the pre- and post-intervention aortic configurations to evaluate changes in flow rate and pressure drop at LSA level and differences in the lumen size. The results revealed a decrease in the flow rate equal to 2.38% after the intervention and an increase in pressure drop of 4.48 mmHg, while the maximum differences in LSA cross-sectional areas and diameters were 1.49 cm2 and 0.64 cm, respectively. Minimal alteration in LSA blood flow due to the chosen intervention approach confirmed the effectiveness of the selected unibody design endograft with LSA preservation, ensuring myocardial perfusion. Therefore, CFD simulations demonstrate to be a powerful tool to evaluate the hemodynamic consequences of interventions by accurately estimating the main fluid dynamic parameters.

2.
Sensors (Basel) ; 24(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38400229

ABSTRACT

The multimodal and multidomain registration of medical images have gained increasing recognition in clinical practice as a powerful tool for fusing and leveraging useful information from different imaging techniques and in different medical fields such as cardiology and orthopedics. Image registration could be a challenging process, and it strongly depends on the correct tuning of registration parameters. In this paper, the robustness and accuracy of a landmarks-based approach have been presented for five cardiac multimodal image datasets. The study is based on 3D Slicer software and it is focused on the registration of a computed tomography (CT) and 3D ultrasound time-series of post-operative mitral valve repair. The accuracy of the method, as a function of the number of landmarks used, was performed by analysing root mean square error (RMSE) and fiducial registration error (FRE) metrics. The validation of the number of landmarks resulted in an optimal number of 10 landmarks. The mean RMSE and FRE values were 5.26 ± 3.17 and 2.98 ± 1.68 mm, respectively, showing comparable performances with respect to the literature. The developed registration process was also tested on a CT orthopaedic dataset to assess the possibility of reconstructing the damaged jaw portion for a pre-operative planning setting. Overall, the proposed work shows how 3D Slicer and registration by landmarks can provide a useful environment for multimodal/unimodal registration.


Subject(s)
Orthopedics , Tomography, X-Ray Computed/methods , Lung , Software , Heart , Imaging, Three-Dimensional/methods , Algorithms
3.
Comput Methods Programs Biomed ; 242: 107790, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37708583

ABSTRACT

BACKGROUND AND OBJECTIVE: Phase contrast magnetic resonance imaging (4D flow MRI) is an imaging technique able to provide blood velocity in vivo and morphological information. This capability has been used to study mainly the hemodynamics of large vessels, such as the thoracic aorta. However, the segmentation of 4D flow MRI data is a complex and time-consuming task. In recent years, neural networks have shown great accuracy in segmentation tasks if large datasets are provided. Unfortunately, in the context of 4D flow MRI, the availability of these data is limited due to its recent adoption in clinical settings. In this study, we propose a pipeline for generating synthetic thoracic aorta phase contrast magnetic resonance angiography (PCMRA) to expand the limited dataset of patient-specific PCMRA images, ultimately improving the accuracy of the neural network segmentation even with a small real dataset. METHODS: The pipeline involves several steps. First, a statistical shape model is used to synthesize new artificial geometries to improve data numerosity and variability. Secondly, computational fluid dynamics simulations are employed to simulate the velocity fields and, finally, after a downsampling and a signal-to-noise and velocity limit adjustment in both frequency and spatial domains, volumes are obtained using the PCMRA formula. These synthesized volumes are used in combination with real-world data to train a 3D U-Net neural network. Different settings of real and synthetic data are tested. RESULTS: Incorporating synthetic data into the training set significantly improved the segmentation performance compared to using only real data. The experiments with synthetic data achieved a DICE score (DS) value of 0.83 and a better target reconstruction with respect to the case with only real data (DS = 0.65). CONCLUSION: The proposed pipeline demonstrated the ability to increase the dataset in terms of numerosity and variability and to improve the segmentation accuracy for the thoracic aorta using PCMRA.


Subject(s)
Deep Learning , Humans , Blood Flow Velocity , Magnetic Resonance Imaging/methods , Magnetic Resonance Angiography/methods , Neural Networks, Computer
4.
JACC Case Rep ; 16: 101869, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37396316

ABSTRACT

We report on a 2-week-old infant with huge left main coronary artery-to-right ventricular outflow tract fistula causing myocardial ischemia due to global coronary steal who was successfully submitted to percutaneous closure guided by a 3-dimensional-printed model using a duct-occluder vascular plug. (Level of Difficulty: Advanced.).

6.
J Biomech ; 154: 111620, 2023 06.
Article in English | MEDLINE | ID: mdl-37178494

ABSTRACT

In the context of aortic hemodynamics, uncertainties affecting blood flow simulations hamper their translational potential as supportive technology in clinics. Computational fluid dynamics (CFD) simulations under rigid-walls assumption are largely adopted, even though the aorta contributes markedly to the systemic compliance and is characterized by a complex motion. To account for personalized wall displacements in aortic hemodynamics simulations, the moving-boundary method (MBM) has been recently proposed as a computationally convenient strategy, although its implementation requires dynamic imaging acquisitions not always available in clinics. In this study we aim to clarify the real need for introducing aortic wall displacements in CFD simulations to accurately capture the large-scale flow structures in the healthy human ascending aorta (AAo). To do that, the impact of wall displacements is analyzed using subject-specific models where two CFD simulations are performed imposing (1) rigid walls, and (2) personalized wall displacements adopting a MBM, integrating dynamic CT imaging and a mesh morphing technique based on radial basis functions. The impact of wall displacements on AAo hemodynamics is analyzed in terms of large-scale flow patterns of physiological significance, namely axial blood flow coherence (quantified applying the Complex Networks theory), secondary flows, helical flow and wall shear stress (WSS). From the comparison with rigid-wall simulations, it emerges that wall displacements have a minor impact on the AAo large-scale axial flow, but they can affect secondary flows and WSS directional changes. Overall, helical flow topology is moderately affected by aortic wall displacements, whereas helicity intensity remains almost unchanged. We conclude that CFD simulations with rigid-wall assumption can be a valid approach to study large-scale aortic flows of physiological significance.


Subject(s)
Aorta, Thoracic , Aorta , Humans , Aorta, Thoracic/physiology , Aorta/physiology , Hemodynamics/physiology , Stress, Mechanical , Models, Cardiovascular , Blood Flow Velocity/physiology
7.
JACC Case Rep ; 8: 101662, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36860559

ABSTRACT

Pediatric idiopathic aortic aneurysm is rare. Single saccular malformation can complicate native or recurrent aortic coarctation; however, multiloculated dilatations of the descending thoracic aorta, associated with aortic coarctation, have so far never been described in literature. In our case, printed 3D model technology was crucial in planning transcatheter treatment. (Level of Difficulty: Intermediate.).

8.
Front Bioeng Biotechnol ; 11: 1096196, 2023.
Article in English | MEDLINE | ID: mdl-36793441

ABSTRACT

The analysis of mechanobiology of arterial tissues remains an important topic of research for cardiovascular pathologies evaluation. In the current state of the art, the gold standard to characterize the tissue mechanical behavior is represented by experimental tests, requiring the harvesting of ex-vivo specimens. In recent years though, image-based techniques for the in vivo estimation of arterial tissue stiffness were presented. The aim of this study is to define a new approach to provide local distribution of arterial stiffness, estimated as the linearized Young's Modulus, based on the knowledge of in vivo patient-specific imaging data. In particular, the strain and stress are estimated with sectional contour length ratios and a Laplace hypothesis/inverse engineering approach, respectively, and then used to calculate the Young's Modulus. After describing the method, this was validated by using a set of Finite Element simulations as input. In particular, idealized cylinder and elbow shapes plus a single patient-specific geometry were simulated. Different stiffness distributions were tested for the simulated patient-specific case. After the validation from Finite Element data, the method was then applied to patient-specific ECG-gated Computed Tomography data by also introducing a mesh morphing approach to map the aortic surface along the cardiac phases. The validation process revealed satisfactory results. In the simulated patient-specific case, root mean square percentage errors below 10% for the homogeneous distribution and below 20% for proximal/distal distribution of stiffness. The method was then successfully used on the three ECG-gated patient-specific cases. The resulting distributions of stiffness exhibited significant heterogeneity, nevertheless the resulting Young's moduli were always contained within the 1-3 MPa range, which is in line with literature.

9.
Med Eng Phys ; 107: 103873, 2022 09.
Article in English | MEDLINE | ID: mdl-36068045

ABSTRACT

Magnetic resonance imaging (MRI) is the preferred modality to assess hemodynamics in healthy and diseased blood vessels. As an affordable and non-invasive alternative, Color-Doppler imaging is a good candidate. Nevertheless, Color-Doppler acquisitions provide only partial information on the blood velocity within the vessel. We present a framework to reconstruct 2D velocity fields in the aorta. We generated 2D Color-Doppler-like images from patient-specific Computational Fluid Dynamics (CFD) models of abdominal aortas and evaluated the framework's performance. The 2D velocity field reconstruction is based on the minimization of a cost function, in which the reconstructed velocities are constrained to satisfy fluid dynamics principles. The numerical evaluations show that the reconstructed vector flow fields agree with ground-truth velocities, with an average magnitude error of less than 4% and an average angular error of less than 2∘. We lastly illustrate the 2D velocity field reconstructed from in-vivo Color-Doppler data. Observing the hemodynamics in patients is expected to have a clinical impact in assessing disease development and progression, such as abdominal aortic aneurysms.


Subject(s)
Aorta, Abdominal , Hemodynamics , Aorta, Abdominal/diagnostic imaging , Blood Flow Velocity , Humans , Hydrodynamics , Ultrasonography, Doppler
10.
JACC Case Rep ; 4(6): 343-347, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35495557

ABSTRACT

Ascending aorta pseudoaneurysm is a rare but potentially life-threatening complication of atherosclerosis, infections, chest trauma, transcatheter or surgical interventions. Due to high surgical risk, percutaneous closure is considered a valuable cost-effective therapeutic alternative. In this setting, 3D printing technology is emerging as a powerful tool to plan transcatheter repair. (Level of Difficulty: Advanced.).

11.
Ann Biomed Eng ; 49(12): 3494-3507, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34431017

ABSTRACT

Computational Fluid Dynamics (CFD) simulations of blood flow are widely used to compute a variety of hemodynamic indicators such as velocity, time-varying wall shear stress, pressure drop, and energy losses. One of the major advances of this approach is that it is non-invasive. The accuracy of the cardiovascular simulations depends directly on the level of certainty on input parameters due to the modelling assumptions or computational settings. Physiologically suitable boundary conditions at the inlet and outlet of the computational domain are needed to perform a patient-specific CFD analysis. These conditions are often affected by uncertainties, whose impact can be quantified through a stochastic approach. A methodology based on a full propagation of the uncertainty from clinical data to model results is proposed here. It was possible to estimate the confidence associated with model predictions, differently than by deterministic simulations. We evaluated the effect of using three-element Windkessel models as the outflow boundary conditions of a patient-specific aortic coarctation model. A parameter was introduced to calibrate the resistances of the Windkessel model at the outlets. The generalized Polynomial Chaos method was adopted to perform the stochastic analysis, starting from a few deterministic simulations. Our results show that the uncertainty of the input parameter gave a remarkable variability on the volume flow rate waveform at the systolic peak simulating the conditions before the treatment. The same uncertain parameter had a slighter effect on other quantities of interest, such as the pressure gradient. Furthermore, the results highlight that the fine-tuning of Windkessel resistances is not necessary to simulate the post-stenting scenario.


Subject(s)
Aortic Coarctation/physiopathology , Hemodynamics , Hydrodynamics , Models, Cardiovascular , Patient-Specific Modeling , Aortic Coarctation/surgery , Blood Flow Velocity , Blood Pressure , Computer Simulation , Humans , Stents , Stochastic Processes , Stress, Mechanical
12.
J Cardiovasc Med (Hagerstown) ; 22(12): e1-e7, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-32941328

ABSTRACT

Left ventricular pseudoaneurysm (LVPsA) is a rare complication of myocardial infarction, cardiac surgery, chest trauma, infection or transcatheter interventions. It may cause arrhythmias, mass effect, thromboembolism and life-threatening rupture. The transcatheter approach is nowadays considered a cost-effective alternative to surgery. In this setting, 3D printing could be an emerging, powerful tool to plan transcatheter closure and choose the best occluding device. This study reports on three cases of complex LVPsA successfully treated by transcatheter device implantation guided by printed 3D heart models.


Subject(s)
Aneurysm, False , Cardiac Catheterization , Heart Aneurysm , Heart Failure , Heart Ventricles , Image Processing, Computer-Assisted/methods , Septal Occluder Device , Aged , Aged, 80 and over , Aneurysm, False/complications , Aneurysm, False/diagnostic imaging , Aneurysm, False/surgery , Cardiac Catheterization/instrumentation , Cardiac Catheterization/methods , Computed Tomography Angiography/methods , Echocardiography/methods , Female , Heart Aneurysm/complications , Heart Aneurysm/diagnostic imaging , Heart Aneurysm/surgery , Heart Failure/etiology , Heart Failure/physiopathology , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Heart Ventricles/surgery , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Patient-Specific Modeling , Prosthesis Implantation/methods , Tomography, X-Ray Computed/methods , Treatment Outcome
14.
Front Med Technol ; 3: 748908, 2021.
Article in English | MEDLINE | ID: mdl-35047960

ABSTRACT

The assessment of cardiovascular hemodynamics with computational techniques is establishing its fundamental contribution within the world of modern clinics. Great research interest was focused on the aortic vessel. The study of aortic flow, pressure, and stresses is at the basis of the understanding of complex pathologies such as aneurysms. Nevertheless, the computational approaches are still affected by sources of errors and uncertainties. These phenomena occur at different levels of the computational analysis, and they also strongly depend on the type of approach adopted. With the current study, the effect of error sources was characterized for an aortic case. In particular, the geometry of a patient-specific aorta structure was segmented at different phases of a cardiac cycle to be adopted in a computational analysis. Different levels of surface smoothing were imposed to define their influence on the numerical results. After this, three different simulation methods were imposed on the same geometry: a rigid wall computational fluid dynamics (CFD), a moving-wall CFD based on radial basis functions (RBF) CFD, and a fluid-structure interaction (FSI) simulation. The differences of the implemented methods were defined in terms of wall shear stress (WSS) analysis. In particular, for all the cases reported, the systolic WSS and the time-averaged WSS (TAWSS) were defined.

15.
Med Eng Phys ; 91: 68-78, 2021 05.
Article in English | MEDLINE | ID: mdl-33008714

ABSTRACT

Numerical simulations to evaluate thoracic aortic hemodynamics include a computational fluid dynamic (CFD) approach or fluid-structure interaction (FSI) approach. While CFD neglects the arterial deformation along the cardiac cycle by applying a rigid wall simplification, on the other side the FSI simulation requires a lot of assumptions for the material properties definition and high computational costs. The aim of this study is to investigate the feasibility of a new strategy, based on Radial Basis Functions (RBF) mesh morphing technique and transient simulations, able to introduce the patient-specific changes in aortic geometry during the cardiac cycle. Starting from medical images, aorta models at different phases of cardiac cycle were reconstructed and a transient shape deformation was obtained by proper activating incremental RBF solutions during the simulation process. The results, in terms of main hemodynamic parameters, were compared with two performed CFD simulations for the aortic model at minimum and maximum volume. Our implemented strategy copes the actual arterial variation during cardiac cycle with high accuracy, capturing the impact of geometrical variations on fluid dynamics, overcoming the complexity of a standard FSI approach.


Subject(s)
Hydrodynamics , Models, Cardiovascular , Aorta , Aorta, Thoracic , Computer Simulation , Hemodynamics , Humans
16.
Curr Pharm Des ; 27(16): 1918-1930, 2021.
Article in English | MEDLINE | ID: mdl-32568014

ABSTRACT

BACKGROUND: 3D printing represents an emerging technology in the field of cardiovascular medicine. 3D printing can help to perform a better analysis of complex anatomies to optimize intervention planning. METHODS: A systematic review was performed to illustrate the 3D printing technology and to describe the workflow to obtain 3D printed models from patient-specific images. Examples from our laboratory of the benefit of 3D printing in planning interventions were also reported. RESULTS: 3D printing technique is reliable when applied to high-quality 3D image data (CTA, CMR, 3D echography), but it still needs the involvement of expert operators for image segmentation and mesh refinement. 3D printed models could be useful in interventional planning, although prospective studies with comprehensive and clinically meaningful endpoints are required to demonstrate the clinical utility. CONCLUSION: 3D printing can be used to improve anatomy understanding and surgical planning.


Subject(s)
Cardiology , Printing, Three-Dimensional , Humans , Imaging, Three-Dimensional , Prospective Studies
17.
Cardiovasc Eng Technol ; 9(4): 688-706, 2018 12.
Article in English | MEDLINE | ID: mdl-30357714

ABSTRACT

PURPOSE: Computational fluid dynamics (CFD) and 4D-flow magnetic resonance imaging (MRI) are synergically used for the simulation and the analysis of the flow in a patient-specific geometry of a healthy thoracic aorta. METHODS: CFD simulations are carried out through the open-source code SimVascular. The MRI data are used, first, to provide patient-specific boundary conditions. In particular, the experimentally acquired flow rate waveform is imposed at the inlet, while at the outlets the RCR parameters of the Windkessel model are tuned in order to match the experimentally measured fractions of flow rate exiting each domain outlet during an entire cardiac cycle. Then, the MRI data are used to validate the results of the hemodynamic simulations. As expected, with a rigid-wall model the computed flow rate waveforms at the outlets do not show the time lag respect to the inlet waveform conversely found in MRI data. We therefore evaluate the effect of wall compliance by using a linear elastic model with homogeneous and isotropic properties and changing the value of the Young's modulus. A stochastic analysis based on the polynomial chaos approach is adopted, which allows continuous response surfaces to be obtained in the parameter space starting from a few deterministic simulations. RESULTS: The flow rate waveform can be accurately reproduced by the compliant simulations in the ascending aorta; on the other hand, in the aortic arch and in the descending aorta, the experimental time delay can be matched with low values of the Young's modulus, close to the average value estimated from experiments. However, by decreasing the Young's modulus the underestimation of the peak flow rate becomes more significant. As for the velocity maps, we found a generally good qualitative agreement of simulations with MRI data. The main difference is that the simulations overestimate the extent of reverse flow regions or predict reverse flow when it is absent in the experimental data. Finally, a significant sensitivity to wall compliance of instantaneous shear stresses during large part of the cardiac cycle period is observed; the variability of the time-averaged wall shear stresses remains however very low. CONCLUSIONS: In summary, a successful integration of hemodynamic simulations and of MRI data for a patient-specific simulation has been shown. The wall compliance seems to have a significant impact on the numerical predictions; a larger wall elasticity generally improves the agreement with experimental data.


Subject(s)
Aorta, Thoracic/diagnostic imaging , Hemodynamics , Magnetic Resonance Angiography/methods , Models, Cardiovascular , Numerical Analysis, Computer-Assisted , Patient-Specific Modeling , Aorta, Thoracic/physiology , Blood Flow Velocity , Compliance , Elastic Modulus , Humans , Image Interpretation, Computer-Assisted , Predictive Value of Tests , Regional Blood Flow , Reproducibility of Results , Stochastic Processes , Vascular Stiffness
18.
J Biomech Eng ; 140(11)2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30098137

ABSTRACT

We present a novel framework for the fluid dynamics analysis of healthy subjects and patients affected by ascending thoracic aorta aneurysm (aTAA). Our aim is to obtain indications about the effect of a bulge on the hemodynamic environment at different enlargements. Three-dimensional (3D) surface models defined from healthy subjects and patients with aTAA, selected for surgical repair, were generated. A representative shape model for both healthy and pathological groups has been identified. A morphing technique based on radial basis functions (RBF) was applied to mold the shape relative to healthy patient into the representative shape of aTAA dataset to enable the parametric simulation of the aTAA formation. Computational fluid dynamics (CFD) simulations were performed by means of a finite volume solver using the mean boundary conditions obtained from three-dimensional (PC-MRI) acquisition. Blood flow helicity and flow descriptors were assessed for all the investigated models. The feasibility of the proposed integrated approach pertaining the coupling between an RBF morphing technique and CFD simulation for aTAA was demonstrated. Significant hemodynamic changes appear at the 60% of the bulge progression. An impingement of the flow toward the bulge was observed by analyzing the normalized flow eccentricity (NFE) index.

SELECTION OF CITATIONS
SEARCH DETAIL
...