Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2532, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514653

ABSTRACT

Picornaviruses are a leading cause of central nervous system (CNS) infections. While genotypes such as parechovirus A3 (PeV-A3) and echovirus 11 (E11) can elicit severe neurological disease, the highly prevalent PeV-A1 is not associated with CNS disease. Here, we expand our current understanding of these differences in PeV-A CNS disease using human brain organoids and clinical isolates of the two PeV-A genotypes. Our data indicate that PeV-A1 and A3 specific differences in neurological disease are not due to infectivity of CNS cells as both viruses productively infect brain organoids with a similar cell tropism. Proteomic analysis shows that PeV-A infection significantly alters the host cell metabolism. The inflammatory response following PeV-A3 (and E11 infection) is significantly more potent than that upon PeV-A1 infection. Collectively, our findings align with clinical observations and suggest a role for neuroinflammation, rather than viral replication, in PeV-A3 (and E11) infection.


Subject(s)
Central Nervous System Diseases , Parechovirus , Picornaviridae Infections , Humans , Parechovirus/genetics , Proteomics , Inflammation , Brain , Enterovirus B, Human
2.
Antiviral Res ; 222: 105798, 2024 02.
Article in English | MEDLINE | ID: mdl-38190972

ABSTRACT

Halofuginone hydrobromide has shown potent antiviral efficacy against a variety of viruses such as SARS-CoV-2, dengue, or chikungunya virus, and has, therefore, been hypothesized to have broad-spectrum antiviral activity. In this paper, we tested this broad-spectrum antiviral activity of Halofuginone hydrobomide against viruses from different families (Picornaviridae, Herpesviridae, Orthomyxoviridae, Coronaviridae, and Flaviviridae). To this end, we used relevant human models of the airway and intestinal epithelium and regionalized neural organoids. Halofuginone hydrobomide showed antiviral activity against SARS-CoV-2 in the airway epithelium with no toxicity at equivalent concentrations used in human clinical trials but not against any of the other tested viruses.


Subject(s)
Antiviral Agents , Piperidines , Quinazolinones , Viruses , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Microphysiological Systems , SARS-CoV-2 , Brain
3.
Med ; 4(10): 660-663, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37837961

ABSTRACT

Technological advancements allow for the use of more physiologically relevant models to study viral neuropathology. This results in closure of the gap between clinical and basic research. We discuss the current discrepancy in the use of terminology around viral CNS infections, which impedes interdisciplinary communication and translation of findings.


Subject(s)
Central Nervous System Viral Diseases , Nervous System Diseases , Humans , Research , Neuropathology
4.
Nat Commun ; 11(1): 1267, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152307

ABSTRACT

Three-dimensional (3D) hydrogel printing enables production of volumetric architectures containing desired structures using programmed automation processes. Our study reports a unique method of resolution enhancement purely relying on post-printing treatment of hydrogel constructs. By immersing a 3D-printed patterned hydrogel consisting of a hydrophilic polyionic polymer network in a solution of polyions of the opposite net charge, shrinking can rapidly occur resulting in various degrees of reduced dimensions comparing to the original pattern. This phenomenon, caused by complex coacervation and water expulsion, enables us to reduce linear dimensions of printed constructs while maintaining cytocompatible conditions in a cell type-dependent manner. We anticipate our shrinking printing technology to find widespread applications in promoting the current 3D printing capacities for generating higher-resolution hydrogel-based structures without necessarily having to involve complex hardware upgrades or other printing parameter alterations.


Subject(s)
Biomechanical Phenomena , Bioprinting/methods , Hydrogels/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Animals , Biocompatible Materials/chemistry , Chitosan , Gelatin , Humans , MCF-7 Cells , Methacrylates , Mice , Polymers/chemistry , Printing, Three-Dimensional/instrumentation , Tissue Engineering/instrumentation , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...