Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 16(18): e202301237, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37679097

ABSTRACT

Invited for this month's cover is the groups of Prof. Minna Hakkarainen, Prof. István Furó and Assoc. Prof. Per-Olof Syrén at KTH Royal Institute of Technology. The image shows how microwave irradiation is an efficient pre-treatment method of polyethylene terephthalate (PET) for subsequent biocatalytic depolymerization. The Research Article itself is available at 10.1002/cssc.202300742.

2.
ChemSusChem ; 16(18): e202300742, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37384425

ABSTRACT

Recycling plastics is the key to reaching a sustainable materials economy. Biocatalytic degradation of plastics shows great promise by allowing selective depolymerization of man-made materials into constituent building blocks under mild aqueous conditions. However, insoluble plastics have polymer chains that can reside in different conformations and show compact secondary structures that offer low accessibility for initiating the depolymerization reaction by enzymes. In this work, we overcome these shortcomings by microwave irradiation as a pre-treatment process to deliver powders of polyethylene terephthalate (PET) particles suitable for subsequent biotechnology-assisted plastic degradation by previously generated engineered enzymes. An optimized microwave step resulted in 1400 times higher integral of released terephthalic acid (TPA) from high-performance liquid chromatography (HPLC), compared to original untreated PET bottle. Biocatalytic plastic hydrolysis of substrates originating from PET bottles responded to 78 % yield conversion from 2 h microwave pretreatment and 1 h enzymatic reaction at 30 °C. The increase in activity stems from enhanced substrate accessibility from the microwave step, followed by the administration of designer enzymes capable of accommodating oligomers and shorter chains released in a productive conformation.


Subject(s)
Plastics , Polyethylene Terephthalates , Humans , Plastics/chemistry , Plastics/metabolism , Plastics/radiation effects , Polyethylene Terephthalates/chemistry , Microwaves , Polymers/chemistry , Hydrolases/metabolism
3.
Sci Total Environ ; 736: 139611, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32473458

ABSTRACT

The onset of coronavirus pandemic has sparked a shortage of facemasks in almost all nations. Without this personal protective equipment, healthcare providers, essential workers, and the general public are exposed to the risk of infection. In light of the aforementioned, it is critical to balance the supply and demand for masks. COVID-19 will also ensure that masks are always considered as an essential commodity in future pandemic preparedness. Moreover, billions of facemasks are produced from petrochemicals derived raw materials, which are non-degradable upon disposal after their single use, thus causing environmental pollution and damage. The sustainable way forward is to utilise raw materials that are side-stream products of local industries to develop facemasks having equal or better efficiency than the conventional ones. In this regard, wheat gluten biopolymer, which is a by-product or co-product of cereal industries, can be electrospun into nanofibre membranes and subsequently carbonised at over 700 °C to form a network structure, which can simultaneously act as the filter media and reinforcement for gluten-based masks. In parallel, the same gluten material can be processed into cohesive thin films using plasticiser and hot press. Additionally, lanosol, a naturally-occurring substance, imparts fire (V-0 rating in vertical burn test), and microbe resistance in gluten plastics. Thus, thin films of flexible gluten with very low amounts of lanosol (<10 wt%) can be bonded together with the carbonised mat and shaped by thermoforming to create the facemasks. The carbon mat acting as the filter can be attached to the masks through adapters that can also be made from injection moulded gluten. The creation of these masks could simultaneously be effective in reducing the transmittance of infectious diseases and pave the way for environmentally benign sustainable products.


Subject(s)
Communicable Disease Control/instrumentation , Coronavirus Infections/prevention & control , Masks , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , Biomedical Technology , COVID-19 , Catechols/chemistry , Filtration/instrumentation , Glutens/chemistry , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...