Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(6): 3450-3468, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38412306

ABSTRACT

CRISPR-based DNA editing technologies enable rapid and accessible genome engineering of eukaryotic cells. However, the delivery of genetically encoded CRISPR components remains challenging and sustained Cas9 expression correlates with higher off-target activities, which can be reduced via Cas9-protein delivery. Here we demonstrate that baculovirus, alongside its DNA cargo, can be used to package and deliver proteins to human cells. Using protein-loaded baculovirus (pBV), we demonstrate delivery of Cas9 or base editors proteins, leading to efficient genome and base editing in human cells. By implementing a reversible, chemically inducible heterodimerization system, we show that protein cargoes can selectively and more efficiently be loaded into pBVs (spBVs). Using spBVs we achieved high levels of multiplexed genome editing in a panel of human cell lines. Importantly, spBVs maintain high editing efficiencies in absence of detectable off-targets events. Finally, by exploiting Cas9 protein and template DNA co-delivery, we demonstrate up to 5% site-specific targeted integration of a 1.8 kb heterologous DNA payload using a single spBV in a panel of human cell lines. In summary, we demonstrate that spBVs represent a versatile, efficient and potentially safer alternative for CRISPR applications requiring co-delivery of DNA and protein cargoes.


Subject(s)
Baculoviridae , CRISPR-Cas Systems , DNA , Gene Editing , Viral Proteins , Animals , Humans , Baculoviridae/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , DNA/genetics , Gene Editing/methods , Viral Proteins/genetics , Cell Line
2.
Structure ; 32(3): 342-351.e6, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38198950

ABSTRACT

Adenovirus-derived nanoparticles (ADDomer) comprise 60 copies of adenovirus penton base protein (PBP). ADDomer is thermostable, rendering the storage, transport, and deployment of ADDomer-based therapeutics independent of a cold chain. To expand the scope of ADDomers for new applications, we engineered ADDobodies, representing PBP crown domain, genetically separated from PBP multimerization domain. We inserted heterologous sequences into hyper-variable loops, resulting in monomeric, thermostable ADDobodies expressed at high yields in Escherichia coli. The X-ray structure of an ADDobody prototype validated our design. ADDobodies can be used in ribosome display experiments to select a specific binder against a target, with an enrichment factor of ∼104-fold per round. ADDobodies can be re-converted into ADDomers by genetically reconnecting the selected ADDobody with the PBP multimerization domain from a different species, giving rise to a multivalent nanoparticle, called Chimera, confirmed by a 2.2 Å electron cryo-microscopy structure. Chimera comprises 60 binding sites, resulting in ultra-high, picomolar avidity to the target.


Subject(s)
Protein Engineering , Binding Sites
3.
Antib Ther ; 6(4): 277-297, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38075238

ABSTRACT

Background: Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods: Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results: Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion: Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.

4.
Nucleic Acids Res ; 50(13): 7783-7799, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35801912

ABSTRACT

CRISPR-based precise gene-editing requires simultaneous delivery of multiple components into living cells, rapidly exceeding the cargo capacity of traditional viral vector systems. This challenge represents a major roadblock to genome engineering applications. Here we exploit the unmatched heterologous DNA cargo capacity of baculovirus to resolve this bottleneck in human cells. By encoding Cas9, sgRNA and Donor DNAs on a single, rapidly assembled baculoviral vector, we achieve with up to 30% efficacy whole-exon replacement in the intronic ß-actin (ACTB) locus, including site-specific docking of very large DNA payloads. We use our approach to rescue wild-type podocin expression in steroid-resistant nephrotic syndrome (SRNS) patient derived podocytes. We demonstrate single baculovirus vectored delivery of single and multiplexed prime-editing toolkits, achieving up to 100% cleavage-free DNA search-and-replace interventions without detectable indels. Taken together, we provide a versatile delivery platform for single base to multi-gene level genome interventions, addressing the currently unmet need for a powerful delivery system accommodating current and future CRISPR technologies without the burden of limited cargo capacity.


Subject(s)
Baculoviridae , CRISPR-Cas Systems , Baculoviridae/genetics , CRISPR-Cas Systems/genetics , DNA/genetics , Gene Editing , Genetic Vectors , Humans
5.
Science ; 370(6517): 725-730, 2020 11 06.
Article in English | MEDLINE | ID: mdl-32958580

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a global crisis. Key to SARS-CoV-2 therapeutic development is unraveling the mechanisms that drive high infectivity, broad tissue tropism, and severe pathology. Our 2.85-angstrom cryo-electron microscopy structure of SARS-CoV-2 spike (S) glycoprotein reveals that the receptor binding domains tightly bind the essential free fatty acid linoleic acid (LA) in three composite binding pockets. A similar pocket also appears to be present in the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). LA binding stabilizes a locked S conformation, resulting in reduced angiotensin-converting enzyme 2 (ACE2) interaction in vitro. In human cells, LA supplementation synergizes with the COVID-19 drug remdesivir, suppressing SARS-CoV-2 replication. Our structure directly links LA and S, setting the stage for intervention strategies that target LA binding by SARS-CoV-2.


Subject(s)
Linoleic Acid/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus , Binding Sites , Chlorocebus aethiops , Cryoelectron Microscopy , Humans , Middle East Respiratory Syndrome Coronavirus , Models, Molecular , Peptidyl-Dipeptidase A/metabolism , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/ultrastructure , Vero Cells
6.
Pharmaceutics ; 12(8)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796680

ABSTRACT

DNA delivery is at the forefront of current research efforts in gene therapy and synthetic biology. Viral vectors have traditionally dominated the field; however, nonviral delivery systems are increasingly gaining traction. Baculoviruses are arthropod-specific viruses that can be easily engineered and repurposed to accommodate and deliver large sequences of exogenous DNA into mammalian cells, tissues, or ultimately organisms. These synthetic virus-derived nanosystems (SVNs) are safe, readily customized, and can be manufactured at scale. By implementing clustered regularly interspaced palindromic repeats (CRISPR) associated protein (CRISPR/Cas) modalities into this system, we developed SVNs capable of inserting complex DNAs into genomes, at base pair precision. We anticipate a major role for SVNs as an attractive alternative to viral vectors in accelerating genome engineering and gene therapy applications in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...