Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 10: 929, 2019.
Article in English | MEDLINE | ID: mdl-31551902

ABSTRACT

Unfavorable outcomes (UO) occur in 15-20% of patients with mild traumatic brain injury (mTBI). Early identification of patients at risk of UO is crucial for suitable management to be initiated, increasing the chances of full recovery. We previously developed a prognostic tool for early identification (8-21 days after the injury) of patients likely to develop UO. Patients whose initial risk factors indicate UO are at risk of developing post-concussion syndrome (PCS). In the present study, we examined the beneficial effects of early multidimensional management (MM) on prognosis. We used our prognostic tool to classify 221 mTBI patients into a UO (97) group or a favorable outcome (FO) group (124). We randomized the UO patients into two subgroups: a group that underwent MM (involving psychoeducation and cognitive rehabilitation) (34) and a control group with no specific treatment other than psychoeducation (46). At 6 months, these two groups were compared to assess the impact of MM. Among the followed-up patients initially classified as having FO (101), 95% had FO at 6 months and only five had PCS [as defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV classification]. Among the followed-up MM patients, 94% did not have PCS 6 months after injury, whereas 52% of the control patients had PCS. The effect of MM on the recovery of patients at 6 months, once adjusted for the main confounding factors, was significant (p < 0.001). These results show that the initiation of MM after early identification of at-risk mTBI patients can considerably improve their outcomes. Clinical Trials Registration: The study was registered at ClinicalTrials.gov (NCT03811626).

2.
Front Neurol ; 8: 666, 2017.
Article in English | MEDLINE | ID: mdl-29312112

ABSTRACT

Mild traumatic brain injury (MTBI) is a common condition within the general population, usually with good clinical outcome. However, in 10-25% of cases, a post-concussive syndrome (PCS) occurs. Identifying early prognostic factors for the development of PCS can ensure widespread clinical and economic benefits. The aim of this study was to demonstrate the potential value of a comprehensive neuropsychological evaluation to identify early prognostic factors following MTBI. We performed a multi-center open, prospective, longitudinal study that included 72 MTBI patients and 42 healthy volunteers matched for age, gender, and socioeconomic status. MTBI patients were evaluated 8-21 days after injury, and 6 months thereafter, with a full neurological and psychological examination and brain MRI. At 6 months follow-up, MTBI patients were categorized into two subgroups according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) as having either favorable or unfavorable evolution (UE), corresponding to the presence of major or mild neurocognitive disorder due to traumatic brain injury. Univariate and multivariate logistical regression analysis demonstrated the importance of patient complaints, quality of life, and cognition in the outcome of MTBI patients, but only 6/23 UE patients were detected early via the multivariate logistic regression model. Using several variables from each of these three categories of variables, we built a model that assigns a score to each patient presuming the possibility of UE. Statistical analyses showed this last model to be reliable and sensitive, allowing early identification of patients at risk of developing PCS with 95.7% sensitivity and 77.6% specificity.

3.
PLoS One ; 8(6): e65470, 2013.
Article in English | MEDLINE | ID: mdl-23755237

ABSTRACT

Post-concussion syndrome has been related to axonal damage in patients with mild traumatic brain injury, but little is known about the consequences of injury on brain networks. In the present study, our aim was to characterize changes in functional brain networks following mild traumatic brain injury in patients with post-concussion syndrome using resting-state functional magnetic resonance imaging data. We investigated 17 injured patients with persistent post-concussion syndrome (under the DSM-IV criteria) at 6 months post-injury compared with 38 mild traumatic brain injury patients with no post-concussion syndrome and 34 healthy controls. All patients underwent magnetic resonance imaging examinations at the subacute (1-3 weeks) and late (6 months) phases after injury. Group-wise differences in functional brain networks were analyzed using graph theory measures. Patterns of long-range functional networks alterations were found in all mild traumatic brain injury patients. Mild traumatic brain injury patients with post-concussion syndrome had greater alterations than patients without post-concussion syndrome. In patients with post-concussion syndrome, changes specifically affected temporal and thalamic regions predominantly at the subacute stage and frontal regions at the late phase. Our results suggest that the post-concussion syndrome is associated with specific abnormalities in functional brain network that may contribute to explain deficits typically observed in PCS patients.


Subject(s)
Brain Injuries/complications , Brain Injuries/physiopathology , Post-Concussion Syndrome/etiology , Post-Concussion Syndrome/physiopathology , Adult , Brain/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests
5.
Brain Imaging Behav ; 6(2): 283-92, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22477019

ABSTRACT

The presence of a postconcussion syndrome (PCS) induces substantial socio-professional troubles in mild traumatic brain injury (mTBI) patients. Although the exact origin of these disorders is not known, they may be the consequence of diffuse axonal injury (DAI) impacting structural integrity. In the present study, we compared structural integrity at the subacute and late stages after mTBI and in case of PCS, using diffusion-weighted imaging (DWI). Fifty-three mTBI patients were investigated and compared with 40 healthy controls. All patients underwent a DWI examination at the subacute (8-21 days) and late (6 months) phases after injury. MTBI patients with PCS were detected at the subacute phase using the ICD-10 classification. Groupwise differences in structural integrity were investigated using Tract-Based Spatial Statistics (TBSS). A loss of structural integrity was found in mTBI patients at the subacute phase but partially resolved over time. Moreover, we observed that mTBI patients with PCS had greater and wider structural impairment than patients without PCS. These damages persisted over time for PCS patients, while mTBI patients without PCS partly recovered. In conclusion, our results strengthen the relationship between structural integrity and PCS.


Subject(s)
Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Post-Concussion Syndrome/pathology , Adult , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
6.
Hum Brain Mapp ; 32(6): 999-1011, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20669166

ABSTRACT

Mild traumatic brain injury (mTBI) can induce long-term behavioral and cognitive disorders. Although the exact origin of these mTBI-related disorders is not known, they may be the consequence of diffuse axonal injury (DAI). Here, we investigated whether MRI at the subacute stage can detect lesions that are associated with poor functional outcome in mTBI by using anatomical images (T(1) ) and diffusion tensor imaging (DTI). Twenty-three patients with mTBI were investigated and compared with 23 healthy volunteers. All patients underwent an MRI investigation and clinical tests between 7 and 28 days (D15) and between 3 and 4 months (M3) after injury. Patients were divided in two groups of poor outcome (PO) and good outcome (GO), based on their complaints at M3. Groupwise differences in gray matter partial volume between PO patients, GO patients and controls were analyzed using Voxel-Based Morphometry (VBM) from T(1) data at D15. Differences in microstructural architecture were investigated using Tract-Based Spatial Statistics (TBSS) and the diffusion images obtained from DTI data at D15. Permutation-based non-parametric testing was used to assess cluster significance at p < 0.05, corrected for multiple comparisons. Twelve GO patients and 11 PO patients were identified on the basis of their complaints. In PO patients, gray matter partial volume was significantly lower in several cortical and subcortical regions compared with controls, but did not differ from that of GO patients. No difference in diffusion variables was found between GO and controls. PO patients showed significantly higher mean diffusivity values than both controls and GO patients in the corpus callosum, the right anterior thalamic radiations and the superior longitudinal fasciculus, the inferior longitudinal fasciculus and the fronto-occipital fasciculus bilaterally. In conclusion, PO patients differed from GO patients by the presence of diffusion changes in long association white matter fiber tracts but not by gray matter partial volume. These results suggest that DTI at the subacute stage may be a predictive marker of poor outcome in mTBI.


Subject(s)
Brain Injuries/diagnosis , Brain/pathology , Cognition Disorders/diagnosis , Diffusion Tensor Imaging , Mental Disorders/diagnosis , Adolescent , Adult , Aged , Brain Injuries/complications , Cognition Disorders/etiology , Female , Humans , Image Interpretation, Computer-Assisted , Male , Mental Disorders/etiology , Middle Aged , Predictive Value of Tests , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...