Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 239: 124720, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31499313

ABSTRACT

Cathodic protection by galvanic anodes (GACP) is often used to protect immerged metallic structures in harbor environments, especially GACP employing aluminum-based anodes. To follow a previous study that was performed in a laboratory on Al-anode, two monitoring periods were performed in parallel, one in an in situ environment (in the Port of Calais) for 42 months and the other in a laboratory for 18 months, to evaluate the transfer of metals constituting the Al-anode towards the sedimentary compartment. During each monitoring, two conditions of agitation of water (weak and strong) were compared, and different factors of sediment quality were used to assess the enrichment and potential toxic effects of these released metals. The results showed that the dissolution of Al-anode-induced a greater Zn enrichment of sediment than an Al enrichment. This is in contrast with the abundance of these elements present in the composition of the anode and suggested a potential toxic effect for marine organisms with regards to the discovered Zn level, especially in confined areas.


Subject(s)
Aluminum , Electrodes/adverse effects , Environmental Monitoring/methods , Geologic Sediments/analysis , Aquatic Organisms , Geologic Sediments/chemistry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Zinc/analysis , Zinc/toxicity
2.
Mar Pollut Bull ; 106(1-2): 202-14, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26975610

ABSTRACT

A 5-month experiment combining a geochemical survey of metals with a bioaccumulation study in batches of Crassostrea gigas was conducted in two shellfish farming areas and a marina in Normandy (France). Various endpoints at different levels of biological organization were studied. ROCCH data showed differences in biota contamination between the two shellfish areas but the present study revealed only slight differences in metallic contamination and biomarkers. By contrast, significantly different values were recorded in the marina in comparison with the two other sites. Indeed, higher levels of Cd, Cu and Zn were measured in the oysters from the marina, and these oysters also showed a poorer physiological condition (e.g., condition index, histopathological alterations and neutral lipid content). For coastal monitoring, the multi-biomarker approach coupled with an assessment of metallic contamination in biota appeared to be suitable for discriminating spatial differences in environmental quality after only a few months of exposure.


Subject(s)
Crassostrea/metabolism , Metals/metabolism , Water Pollutants, Chemical/metabolism , Animals , Cadmium , Environmental Monitoring , France , Metals/analysis , Shellfish , Water Pollutants, Chemical/analysis
3.
Mar Pollut Bull ; 50(5): 504-11, 2005 May.
Article in English | MEDLINE | ID: mdl-15907492

ABSTRACT

Metallic contaminants associated with sediments showed various behaviours depending on physicochemical conditions. A contaminated sediment core from a harbour in the Bay of Seine was sampled to derive information about metal solubilization from anoxic sediment. In these anaerobic surroundings, physicochemical processes depended on the organic matter cycle, on vertical variation of redox conditions and on precipitation conditions of iron and manganese. In the studied core, anoxic conditions were developed at -15 cm depth. A three-step sequential extraction procedure, modified from the BCR method (now the SM&T), was applied to the anoxic sediment in order to evaluate the potential mobility of fixed metals. Zinc was the most labile metal, recovered in the first extraction stages, and was associated with the non-residual fraction of sediment. Lead was the least labile metal, with up to 70% associated with the residual fraction of the sediment. Copper was associated with organic matter, and its mobility was controlled by the concentration and degradation of the organic fraction. Discharge of organic-rich dredged sediments at sea results in degradation of contained organic matter and may affect the environmental impact of these metals significantly. These results therefore help to improve the waste management of such contaminated sediments.


Subject(s)
Geologic Sediments/analysis , Metals, Heavy/analysis , France , Metals, Heavy/chemistry , Oceans and Seas , Solubility , Spectrophotometry, Atomic , Waste Management/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...