Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
EMBO J ; 43(11): 2166-2197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600242

ABSTRACT

The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.


Subject(s)
Centromere Protein A , Chromosomal Instability , Histones , Humans , Centromere Protein A/metabolism , Centromere Protein A/genetics , Histones/metabolism , Histones/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Complex Component 2/genetics , HeLa Cells , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Centromere/metabolism
2.
Mol Cancer Res ; 22(7): 625-641, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38588446

ABSTRACT

The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma cells reflects the regulatory state of genes associated with the DNA-binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in Ewing sarcoma cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3-repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of Ewing sarcoma cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. Ewing sarcoma cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared with control cells. Visualization of control Ewing sarcoma cells showed a distributed vinculin signal and a network-like organization of F-actin; in contrast, ETS1-activated Ewing sarcoma cells showed an accumulation of vinculin and F-actin toward the plasma membrane. Interestingly, the phenotype of ETS1-activated Ewing sarcoma cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in Ewing sarcoma tumors positively correlates with that of ETS1. Implications: ETS1's transcriptional regulation of the gene encoding the focal adhesion protein TENSIN3 in Ewing sarcoma cells promotes cell movement, a critical step in the evolution of metastasis.


Subject(s)
Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion , Proto-Oncogene Protein c-ets-1 , Proto-Oncogene Protein c-fli-1 , RNA-Binding Protein EWS , Sarcoma, Ewing , Tensins , Humans , Proto-Oncogene Protein c-ets-1/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Tensins/metabolism , Tensins/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Sarcoma, Ewing/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Cell Line, Tumor , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Focal Adhesions/genetics , Focal Adhesions/metabolism
3.
Mol Cancer Ther ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657228

ABSTRACT

Disruption of DNA damage repair via impaired homologous recombination is characteristic of Ewing sarcoma (EWS) cells. We hypothesize that this disruption results in increased reliance on non-homologous end joining (NHEJ) to repair DNA damage. In this study, we investigated if pharmacological inhibition of the enzyme responsible for NHEJ, the DNA-PK holoenzyme, alters the response of EWS cells to genotoxic standard of care chemotherapy. We used analyses of cell viability and proliferation to investigate the effects of clinical DNA-PK inhibitors (DNA-PKi) in combination with six therapeutic or experimental agents for EWS. We performed calculations of synergy using the Loewe Additivity Model. Immunoblotting evaluated treatment effects on DNA-PK, DNA damage, and apoptosis. Flow cytometric analyses evaluated effects on cell cycle and fate. We used orthotopic xenograft models to interrogate tolerability, drug mechanism, and efficacy in vivo. DNA-PKi demonstrated on-target activity, reducing phosphorylated DNA-PK levels in EWS cells. DNA-PKi sensitized EWS cell lines to agents that function as topoisomerase 2 (TOP2) poisons and enhanced the DNA damage induced by TOP2 poisons. Nanomolar concentrations of single agent TOP2 poisons induced G2M arrest and little apoptotic response, while adding DNA-PKi mediated apoptosis. In vivo, the combination of AZD-7648 and etoposide had limited tolerability but resulted in enhanced DNA damage, apoptosis, and EWS tumor shrinkage. The combination of DNA-PKi with standard of care TOP2 poisons in EWS models is synergistic, enhances DNA damage and cell death, and may form the basis of a promising future therapeutic strategy for EWS.

4.
Mol Cell Biol ; 44(3): 103-122, 2024.
Article in English | MEDLINE | ID: mdl-38506112

ABSTRACT

EWSR1 is a member of the FET family of nucleic acid binding proteins that includes FUS and TAF15. Here, we report the systematic analysis of endogenous EWSR1's cellular organization in human cells. We demonstrate that EWSR1, which contains low complexity and nucleic acid binding domains, is present in cells in faster and slower-recovering fractions, indicative of a protein undergoing both rapid exchange and longer-term interactions. The employment of complementary high-resolution imaging approaches shows EWSR1 exists in two visual modalities, a distributed state which is present throughout the nucleoplasm, and a concentrated state consistent with the formation of foci. Both EWSR1 visual modalities localize with nascent RNA. EWSR1 foci concentrate in regions of euchromatin, adjacent to protein markers of transcriptional activation, and significantly colocalize with phosphorylated RNA polymerase II. Our results contribute to bridging the gap between our understanding of the biophysical and biochemical properties of FET proteins, including EWSR1, their functions as transcriptional regulators, and the participation of these proteins in tumorigenesis and neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases , Nucleic Acids , RNA-Binding Protein EWS , Humans , Nucleic Acids/chemistry , Nucleic Acids/metabolism , RNA Polymerase II/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism
5.
bioRxiv ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37645932

ABSTRACT

We report systematic analysis of endogenous EWSR1's cellular organization. We demonstrate that EWSR1, which contains low complexity and nucleic acid binding domains, is present in cells in faster and slower-recovering fractions, indicative of a protein undergoing both rapid exchange and longer-term interactions. The employment of complementary high-resolution imaging approaches shows EWSR1 exists in in two visual modalities, a distributed state which is present throughout the nucleoplasm, and a concentrated state consistent with the formation of foci. Both EWSR1 visual modalities localize with nascent RNA. EWSR1 foci concentrate in regions of euchromatin, adjacent to protein markers of transcriptional activation, and significantly colocalize with phosphorylated RNA polymerase II. Interestingly, EWSR1 and FUS, another FET protein, exhibit distinct spatial organizations. Our results contribute to bridging the gap between our understanding of the biophysical and biochemical properties of FET proteins, including EWSR1, their functions as transcriptional regulators, and the participation of these proteins in tumorigenesis and neurodegenerative disease.

6.
J Cell Sci ; 136(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37129573

ABSTRACT

Restricting the localization of the evolutionarily conserved centromeric histone H3 variant CENP-A to centromeres prevents chromosomal instability (CIN). The mislocalization of CENP-A to non-centromeric regions contributes to CIN in yeasts, flies and human cells. Even though overexpression and mislocalization of CENP-A have been reported in cancers, the mechanisms responsible for its mislocalization remain poorly understood. Here, we used an imaging-based high-throughput RNAi screen to identify factors that prevent mislocalization of overexpressed YFP-tagged CENP-A (YFP-CENP-A) in HeLa cells. Among the top five candidates in the screen - the depletion of which showed increased nuclear YFP-CENP-A fluorescence - were the histone chaperones CHAF1B (or p60) and CHAF1A (or p150). Follow-up validation and characterization experiments showed that CHAF1B-depleted cells exhibited CENP-A mislocalization, CIN phenotypes and increased enrichment of CENP-A in chromatin fractions. The depletion of DAXX, a histone H3.3 chaperone, suppressed CENP-A mislocalization and CIN in CHAF1B-depleted cells. We propose that in CHAF1B-depleted cells, DAXX promotes mislocalization of the overexpressed CENP-A to non-centromeric regions, resulting in CIN. In summary, we identified regulators of CENP-A localization and defined a role for CHAF1B in preventing DAXX-dependent CENP-A mislocalization and CIN.


Subject(s)
Chromosomal Proteins, Non-Histone , Histones , Humans , Histones/genetics , Centromere Protein A/genetics , HeLa Cells , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromatin , Centromere/metabolism , Molecular Chaperones/metabolism , Chromosomal Instability , Autoantigens/genetics , Chromatin Assembly Factor-1/genetics
7.
Wiley Interdiscip Rev RNA ; 14(5): e1788, 2023.
Article in English | MEDLINE | ID: mdl-37042074

ABSTRACT

The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Subject(s)
RNA Splicing , RNA , Child , Humans , RNA/metabolism , Alternative Splicing , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
8.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187702

ABSTRACT

The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma (EWS) cells reflects the regulatory state of genes associated with the DNA binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in EWS cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3 repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of EWS cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. EWS cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared to control cells. The cytoskeleton of control cells and ETS1-activated EWS cell lines also differed. Specifically, control cells exhibited a distributed vinculin signal and a network-like organization of F-actin. In contrast, ETS1-activated EWS cells showed an accumulation of vinculin and F-actin towards the plasma membrane. Interestingly, the phenotype of ETS1-activated EWS cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in EWS tumors positively correlates with that of ETS1.

9.
Nucleic Acids Res ; 50(11): 6474-6496, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35639772

ABSTRACT

In the presence of physiological monovalent cations, thousands of RNA G-rich sequences can form parallel G-quadruplexes (G4s) unless RNA-binding proteins inhibit, destabilize, or resolve the formation of such secondary RNA structures. Here, we have used a disease-relevant model system to investigate the biophysical properties of the RNA-binding protein HNRNPH1's interaction with G-rich sequences. We demonstrate the importance of two EWSR1-exon 8 G-rich regions in mediating the exclusion of this exon from the oncogenic EWS-FLI1 transcripts expressed in a subset of Ewing sarcomas, using complementary analysis of tumor data, long-read sequencing, and minigene studies. We determined that HNRNPH1 binds the EWSR1-exon 8 G-rich sequences with low nM affinities irrespective of whether in a non-G4 or G4 state but exhibits different kinetics depending on RNA structure. Specifically, HNRNPH1 associates and dissociates from G4-folded RNA faster than the identical sequences in a non-G4 state. Importantly, we demonstrate using gel shift and spectroscopic assays that HNRNPH1, particularly the qRRM1-qRRM2 domains, destabilizes the G4s formed by the EWSR1-exon 8 G-rich sequences in a non-catalytic fashion. Our results indicate that HNRNPH1's binding of G-rich sequences favors the accumulation of RNA in a non-G4 state and that this contributes to its regulation of RNA processing.


Subject(s)
G-Quadruplexes , Alternative Splicing , Base Sequence , Oncogenes , RNA/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
10.
NAR Cancer ; 4(1): zcab052, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35047826

ABSTRACT

Ewing sarcoma (EwS) is a small round blue cell tumor and is the second most frequent pediatric bone cancer. 85% of EwS tumors express the fusion oncoprotein EWS-FLI1, the product of a t(11;22) reciprocal translocation. Prior work has indicated that transcription regulation alone does not fully describe the oncogenic capacity of EWS-FLI1, nor does it provide an effective means to stratify patient tumors. Research using EwS cell lines and patient samples has suggested that EWS-FLI1 also disrupts mRNA biogenesis. In this work we both describe the underlying characteristics of mRNA that are aberrantly spliced in EwS tumor samples as well as catalogue mRNA splicing events across other pediatric tumor types. Here, we also use short- and long-read sequencing to identify cis-factors that contribute to splicing profiles we observe in Ewing sarcoma. Our analysis suggests that GC content upstream of cassette exons is a defining factor of mRNA splicing in EwS. We also describe specific splicing events that discriminate EwS tumor samples from the assumed cell of origin, human mesenchymal stem cells derived from bone marrow (hMSC-BM). Finally, we identify specific splicing factors PCBP2, RBMX, and SRSF9 by motif enrichment and confirm findings from tumor samples in EwS cell lines.

11.
Mol Carcinog ; 59(12): 1343-1361, 2020 12.
Article in English | MEDLINE | ID: mdl-33043516

ABSTRACT

The year 2021 marks the 20th anniversary of the first publications reporting the discovery of the gene silencing mechanism, RNA interference (RNAi) in mammalian cells. Along with the many studies that delineated the proteins and substrates that form the RNAi pathway, this finding changed our understanding of the posttranscriptional regulation of mammalian gene expression. Furthermore, the development of methods that exploited the RNAi pathway began the technological revolution that eventually enabled the interrogation of mammalian gene function-from a single gene to the whole genome-in only a few days. The needs of the cancer research community have driven much of this progress. In this perspective, we highlight milestones in the development and application of RNAi-based methods to study carcinogenesis. We discuss how RNAi-based functional genetic analysis of exemplar tumor suppressors and oncogenes furthered our understanding of cancer initiation and progression and explore how such studies formed the basis of genome-wide scale efforts to identify cancer or cancer-type specific vulnerabilities, including studies conducted in vivo. Furthermore, we examine how RNAi technologies have revealed new cancer-relevant molecular targets and the implications for cancer of the first RNAi-based drugs. Finally, we discuss the future of functional genetic analysis, highlighting the increasing availability of complementary approaches to analyze cancer gene function.


Subject(s)
Neoplasms/genetics , Oncogene Proteins/genetics , RNA Interference , Tumor Suppressor Proteins/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Disease Progression , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy
12.
Mol Cancer Ther ; 19(5): 1183-1196, 2020 05.
Article in English | MEDLINE | ID: mdl-32127464

ABSTRACT

There is a need to develop novel approaches to improve the balance between efficacy and toxicity for transcription factor-targeted therapies. In this study, we exploit context-dependent differences in RNA polymerase II processivity as an approach to improve the activity and limit the toxicity of the EWS-FLI1-targeted small molecule, mithramycin, for Ewing sarcoma. The clinical activity of mithramycin for Ewing sarcoma is limited by off-target liver toxicity that restricts the serum concentration to levels insufficient to inhibit EWS-FLI1. In this study, we perform an siRNA screen of the druggable genome followed by a matrix drug screen to identify mithramycin potentiators and a synergistic "class" effect with cyclin-dependent kinase 9 (CDK9) inhibitors. These CDK9 inhibitors enhanced the mithramycin-mediated suppression of the EWS-FLI1 transcriptional program leading to a shift in the IC50 and striking regressions of Ewing sarcoma xenografts. To determine whether these compounds may also be liver protective, we performed a qPCR screen of all known liver toxicity genes in HepG2 cells to identify mithramycin-driven transcriptional changes that contribute to the liver toxicity. Mithramycin induces expression of the BTG2 gene in HepG2 but not Ewing sarcoma cells, which leads to a liver-specific accumulation of reactive oxygen species (ROS). siRNA silencing of BTG2 rescues the induction of ROS and the cytotoxicity of mithramycin in these cells. Furthermore, CDK9 inhibition blocked the induction of BTG2 to limit cytotoxicity in HepG2, but not Ewing sarcoma cells. These studies provide the basis for a synergistic and less toxic EWS-FLI1-targeted combination therapy for Ewing sarcoma.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Bone Neoplasms/drug therapy , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug-Related Side Effects and Adverse Reactions/prevention & control , Plicamycin/pharmacology , Sarcoma, Ewing/drug therapy , Animals , Apoptosis , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Proliferation , Female , Humans , Mice , Mice, Nude , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Wiley Interdiscip Rev RNA ; 11(1): e1562, 2020 01.
Article in English | MEDLINE | ID: mdl-31407506

ABSTRACT

Gene fusions are an important class of mutations in several cancer types and include genomic rearrangements that fuse regulatory or coding elements from two different genes. Analysis of the genetics of cancers harboring fusion oncogenes and the proteins they encode have enhanced cancer diagnosis and in some cases patient treatment. However, the effect of the complex structure of fusion genes on the biogenesis of the resulting chimeric transcripts they express is not well studied. There are two potential RNA-related vulnerabilities inherent to fusion-driven cancers: (a) the processing of the fusion precursor messenger RNA (pre-mRNA) to the mature mRNA and (b) the mature mRNA. In this study, we discuss the effects that the genetic organization of fusion oncogenes has on the generation of translatable mature RNAs and the diversity of fusion transcripts expressed in different cancer subtypes, which can fundamentally influence both tumorigenesis and treatment. We also discuss functional genomic approaches that can be utilized to identify proteins that mediate the processing of fusion pre-mRNAs. Furthermore, we assert that an enhanced understanding of fusion transcript biogenesis and the diversity of the chimeric RNAs present in fusion-driven cancers will increase the likelihood of successful application of RNA-based therapies in this class of tumors. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.


Subject(s)
Neoplasms/genetics , RNA/genetics , Humans
14.
RNA ; 25(12): 1731-1750, 2019 12.
Article in English | MEDLINE | ID: mdl-31511320

ABSTRACT

The primary oncogenic event in ∼85% of Ewing sarcomas is a chromosomal translocation that generates a fusion oncogene encoding an aberrant transcription factor. The exact genomic breakpoints within the translocated genes, EWSR1 and FLI1, vary; however, in EWSR1, breakpoints typically occur within introns 7 or 8. We previously found that in Ewing sarcoma cells harboring EWSR1 intron 8 breakpoints, the RNA-binding protein HNRNPH1 facilitates a splicing event that excludes EWSR1 exon 8 from the EWS-FLI1 pre-mRNA to generate an in-frame mRNA. Here, we show that the processing of distinct EWS-FLI1 pre-mRNAs by HNRNPH1, but not other homologous family members, resembles alternative splicing of transcript variants of EWSR1 We demonstrate that HNRNPH1 recruitment is driven by guanine-rich sequences within EWSR1 exon 8 that have the potential to fold into RNA G-quadruplex structures. Critically, we demonstrate that an RNA mimetic of one of these G-quadruplexes modulates HNRNPH1 binding and induces a decrease in the growth of an EWSR1 exon 8 fusion-positive Ewing sarcoma cell line. Finally, we show that EWSR1 exon 8 fusion-positive cell lines are more sensitive to treatment with the pan-quadruplex binding molecule, pyridostatin (PDS), than EWSR1 exon 8 fusion-negative lines. Also, the treatment of EWSR1 exon 8 fusion-positive cells with PDS decreases EWS-FLI1 transcriptional activity, reversing the transcriptional deregulation driven by EWS-FLI1. Our findings illustrate that modulation of the alternative splicing of EWS-FLI1 pre-mRNA is a novel strategy for future therapeutics against the EWSR1 exon 8 containing fusion oncogenes present in a third of Ewing sarcoma.


Subject(s)
G-Quadruplexes , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism , Protein Binding , RNA, Messenger/chemistry , RNA-Binding Proteins
15.
Proc Natl Acad Sci U S A ; 116(10): 4508-4517, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30709910

ABSTRACT

Oncogenic mutations in the small GTPase KRAS are frequently found in human cancers, and, currently, there are no effective targeted therapies for these tumors. Using a combinatorial siRNA approach, we analyzed a panel of KRAS mutant colorectal and pancreatic cancer cell lines for their dependency on 28 gene nodes that represent canonical RAS effector pathways and selected stress response pathways. We found that RAF node knockdown best differentiated KRAS mutant and KRAS WT cancer cells, suggesting RAF kinases are key oncoeffectors for KRAS addiction. By analyzing all 376 pairwise combination of these gene nodes, we found that cotargeting the RAF, RAC, and autophagy pathways can improve the capture of KRAS dependency better than targeting RAF alone. In particular, codepletion of the oncoeffector kinases BRAF and CRAF, together with the autophagy E1 ligase ATG7, gives the best therapeutic window between KRAS mutant cells and normal, untransformed cells. Distinct patterns of RAS effector dependency were observed across KRAS mutant cell lines, indicative of heterogeneous utilization of effector and stress response pathways in supporting KRAS addiction. Our findings revealed previously unappreciated complexity in the signaling network downstream of the KRAS oncogene and suggest rational target combinations for more effective therapeutic intervention.


Subject(s)
Autophagic Cell Death , Colorectal Neoplasms/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Caco-2 Cells , Cell Survival/genetics , Colorectal Neoplasms/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , HCT116 Cells , Humans , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics
16.
Mol Carcinog ; 57(10): 1342-1357, 2018 10.
Article in English | MEDLINE | ID: mdl-29873416

ABSTRACT

Ewing sarcoma (EWS) is a soft tissue and bone tumor that occurs primarily in adolescents and young adults. In most cases of EWS, the chimeric transcription factor, EWS-FLI1 is the primary oncogenic driver. The epigenome of EWS cells reflects EWS-FLI1 binding and activation or repression of transcription. Here, we demonstrate that EWS-FLI1 positively regulates the expression of proteins required for serine-glycine biosynthesis and uptake of the alternative nutrient source glutamine. Specifically, we show that EWS-FLI1 activates expression of PHGDH, PSAT1, PSPH, and SHMT2. Using cell-based studies, we also establish that EWS cells are dependent on glutamine for cell survival and that EWS-FLI1 positively regulates expression of the glutamine transporter, SLC1A5 and two enzymes involved in the one-carbon cycle, MTHFD2 and MTHFD1L. Inhibition of serine-glycine biosynthesis in EWS cells impacts their redox state leading to an accumulation of reactive oxygen species, DNA damage, and apoptosis. Importantly, analysis of EWS primary tumor transcriptome data confirmed that the aforementioned genes we identified as regulated by EWS-FLI1 exhibit increased expression compared with normal tissues. Furthermore, retrospective analysis of an independent data set generated a significant stratification of the overall survival of EWS patients into low- and high-risk groups based on the expression of PHGDH, PSAT1, PSPH, SHMT2, SLC1A5, MTHFD2, and MTHFD1L. In summary, our study demonstrates that EWS-FLI1 reprograms the metabolism of EWS cells and that serine-glycine metabolism or glutamine uptake are potential targetable vulnerabilities in this tumor type.


Subject(s)
Glutamine/metabolism , Glycine/biosynthesis , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Serine/biosynthesis , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/metabolism , Aminohydrolases/genetics , Aminohydrolases/metabolism , Apoptosis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Survival/genetics , Formate-Tetrahydrofolate Ligase/genetics , Formate-Tetrahydrofolate Ligase/metabolism , Gene Expression Regulation, Neoplastic , HCT116 Cells , HEK293 Cells , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Oncogene Proteins, Fusion/genetics , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology
17.
Cell Rep ; 14(3): 598-610, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26776507

ABSTRACT

Ewing sarcoma cells depend on the EWS-FLI1 fusion transcription factor for cell survival. Using an assay of EWS-FLI1 activity and genome-wide RNAi screening, we have identified proteins required for the processing of the EWS-FLI1 pre-mRNA. We show that Ewing sarcoma cells harboring a genomic breakpoint that retains exon 8 of EWSR1 require the RNA-binding protein HNRNPH1 to express in-frame EWS-FLI1. We also demonstrate the sensitivity of EWS-FLI1 fusion transcripts to the loss of function of the U2 snRNP component, SF3B1. Disrupted splicing of the EWS-FLI1 transcript alters EWS-FLI1 protein expression and EWS-FLI1-driven expression. Our results show that the processing of the EWS-FLI1 fusion RNA is a potentially targetable vulnerability in Ewing sarcoma cells.


Subject(s)
Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Base Sequence , Binding Sites , Calmodulin-Binding Proteins/antagonists & inhibitors , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Cell Line, Tumor , Cell Survival , Exons , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/antagonists & inhibitors , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Humans , Microfilament Proteins/antagonists & inhibitors , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/genetics , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Phosphoproteins/metabolism , Proto-Oncogene Protein c-fli-1/antagonists & inhibitors , Proto-Oncogene Protein c-fli-1/genetics , RNA Interference , RNA Precursors/metabolism , RNA Splicing , RNA Splicing Factors , RNA, Small Interfering/metabolism , RNA-Binding Protein EWS/antagonists & inhibitors , RNA-Binding Protein EWS/genetics , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Ribonucleoprotein, U2 Small Nuclear/antagonists & inhibitors , Ribonucleoprotein, U2 Small Nuclear/genetics , Ribonucleoprotein, U2 Small Nuclear/metabolism , Sarcoma, Ewing/pathology , Trans-Activators , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Mol Cancer Res ; 13(5): 852-62, 2015 May.
Article in English | MEDLINE | ID: mdl-25722303

ABSTRACT

UNLABELLED: To ensure faithful chromosome segregation, cells use the spindle assembly checkpoint (SAC), which can be activated in aneuploid cancer cells. Targeting the components of SAC machinery required for the growth of aneuploid cells may offer a cancer cell-specific therapeutic approach. In this study, the effects of inhibiting Monopolar spindle 1, MPS1 (TTK), an essential SAC kinase, on the radiosensitization of glioblastoma (GBM) cells were analyzed. Clonogenic survival was used to determine the effects of the MPS1 inhibitor NMS-P715 on radiosensitivity in multiple model systems, including GBM cell lines, a normal astrocyte, and a normal fibroblast cell line. DNA double-strand breaks (DSB) were evaluated using γH2AX foci, and cell death was measured by mitotic catastrophe evaluation. Transcriptome analysis was performed via unbiased microarray expression profiling. Tumor xenografts grown from GBM cells were used in tumor growth delay studies. Inhibition of MPS1 activity resulted in reduced GBM cell proliferation. Furthermore, NMS-P715 enhanced the radiosensitivity of GBM cells by decreased repair of DSBs and induction of postradiation mitotic catastrophe. NMS-P715 in combination with fractionated doses of radiation significantly enhanced the tumor growth delay. Molecular profiling of MPS1-silenced GBM cells showed an altered expression of transcripts associated with DNA damage, repair, and replication, including the DNA-dependent protein kinase (PRKDC/DNAPK). Next, inhibition of MPS1 blocked two important DNA repair pathways. In conclusion, these results not only highlight a role for MPS1 kinase in DNA repair and as prognostic marker but also indicate it as a viable option in glioblastoma therapy. IMPLICATIONS: Inhibition of MPS1 kinase in combination with radiation represents a promising new approach for glioblastoma and for other cancer therapies.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Cell Cycle Proteins/antagonists & inhibitors , DNA Repair/radiation effects , Glioblastoma/genetics , Glioblastoma/radiotherapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Apoptosis/physiology , Apoptosis/radiation effects , Brain Neoplasms/enzymology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Female , Glioblastoma/enzymology , Humans , Mice, Nude , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Radiation Tolerance , Random Allocation , Transfection , Xenograft Model Antitumor Assays
19.
Oncotarget ; 5(17): 7635-50, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25245095

ABSTRACT

MicroRNAs (miRNAs) regulate the expression of hundreds of genes. However, identifying the critical targets within a miRNA-regulated gene network is challenging. One approach is to identify miRNAs that exert a context-dependent effect, followed by expression profiling to determine how specific targets contribute to this selective effect. In this study, we performed miRNA mimic screens in isogenic KRAS-Wild-type (WT) and KRAS-Mutant colorectal cancer (CRC) cell lines to identify miRNAs selectively targeting KRAS-Mutant cells. One of the miRNAs we identified as a selective inhibitor of the survival of multiple KRAS-Mutant CRC lines was miR-126. In KRAS-Mutant cells, miR-126 over-expression increased the G1 compartment, inhibited clonogenicity and tumorigenicity, while exerting no effect on KRAS-WT cells. Unexpectedly, the miR-126-regulated transcriptome of KRAS-WT and KRAS-Mutant cells showed no significant differences. However, by analyzing the overlap between miR-126 targets with the synthetic lethal genes identified by RNAi in KRAS-Mutant cells, we identified and validated a subset of miR-126-regulated genes selectively required for the survival and clonogenicity of KRAS-Mutant cells. Our strategy therefore identified critical target genes within the miR-126-regulated gene network. We propose that the selective effect of miR-126 on KRAS-Mutant cells could be utilized for the development of targeted therapy for KRAS mutant tumors.


Subject(s)
Colorectal Neoplasms/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Animals , Cell Line, Tumor , Colorectal Neoplasms/pathology , Female , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Immunoblotting , Mice , Mice, Nude , Mutation , Proto-Oncogene Proteins p21(ras) , Reverse Transcriptase Polymerase Chain Reaction
20.
Cancer Lett ; 354(2): 336-47, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25193464

ABSTRACT

The use of molecularly targeted drugs as single agents has shown limited utility in many tumor types, largely due to the complex and redundant nature of oncogenic signaling networks. Targeting of the PI3K/AKT/mTOR pathway through inhibition of mTOR in combination with aromatase inhibitors has seen success in particular sub-types of breast cancer and there is a need to identify additional synergistic combinations to maximize the clinical potential of mTOR inhibitors. We have used loss-of-function RNAi screens of the mTOR inhibitor rapamycin to identify sensitizers of mTOR inhibition. RNAi screens conducted in combination with rapamycin in multiple breast cancer cell lines identified six genes, AURKB, PLK1, PIK3R1, MAPK12, PRKD2, and PTK6 that when silenced, each enhanced the sensitivity of multiple breast cancer lines to rapamycin. Using selective pharmacological agents we confirmed that inhibition of AURKB or PLK1 synergizes with rapamycin. Compound-associated gene expression data suggested histone deacetylation (HDAC) inhibition as a strategy for reducing the expression of several of the rapamycin-sensitizing genes, and we tested and validated this using the HDAC inhibitor entinostat in vitro and in vivo. Our findings indicate new approaches for enhancing the efficacy of rapamycin including the use of combining its application with HDAC inhibition.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Drug Screening Assays, Antitumor/methods , Protein Kinase Inhibitors/pharmacology , Sirolimus/pharmacology , Animals , Aurora Kinase B/antagonists & inhibitors , Benzamides/administration & dosage , Benzamides/pharmacology , Breast Neoplasms/enzymology , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Class Ia Phosphatidylinositol 3-Kinase , Drug Synergism , Female , Humans , MCF-7 Cells , Mice , Mice, SCID , Mitogen-Activated Protein Kinase 12/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase D2 , Protein Kinase Inhibitors/administration & dosage , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyridines/administration & dosage , Pyridines/pharmacology , RNA Interference , Random Allocation , Sirolimus/administration & dosage , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...