Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37514637

ABSTRACT

Gas sensors that can measure multiple pollutants simultaneously are highly desirable for on-site air pollution monitoring at various scales, both indoor and outdoor. Herein, we introduce a low-cost multi-parameter gas analyzer capable of monitoring multiple gaseous pollutants simultaneously, thus allowing for true analytical measurement. It is a spectral sensor consisting of a Fourier-transform infrared (FTIR) gas analyzer based on a mid-infrared (MIR) spectrometer. The sensor is as small as 7 × 5 × 2.5 cm3. It was deployed in an open-path configuration within a district-scale climatic chamber (Sense City, Marne-la-Vallée, France) with a volume of 20 × 20 × 8 m3. The setup included a transmitter and a receiver separated by 38 m to enable representative measurements of the entire district domain. We used a car inside the climatic chamber, turning the engine on and off to create time sequences of a pollution source. The results showed that carbon dioxide (CO2) and water vapor (H2O) were accurately monitored using the spectral sensor, with agreement with the reference analyzers used to record the pollution levels near the car exhaust. Furthermore, the lower detection limits of CO, NO2 and NO were assessed, demonstrating the capability of the sensor to detect these pollutants. Additionally, a preliminary evaluation of the potential of the spectral sensor to screen multiple volatile organic compounds (VOCs) was conducted at the laboratory scale. Overall, the results demonstrated the potential of the proposed multi-parameter spectral gas sensor in on-site gaseous pollution monitoring.

2.
Microsyst Nanoeng ; 7: 77, 2021.
Article in English | MEDLINE | ID: mdl-34712489

ABSTRACT

Co-integration of nanomaterials into microdevices poses several technological challenges and presents numerous scientific opportunities that have been addressed in this paper by integrating zinc oxide nanowires (ZnO-NWs) into a microfluidic chamber. In addition to the applications of these combined materials, this work focuses on the study of the growth dynamics and uniformity of nanomaterials in a tiny microfluidic reactor environment. A unique experimental platform was built through the integration of a noninvasive optical characterization technique with the microfluidic reactor. This platform allowed the unprecedented demonstration of time-resolved and spatially resolved monitoring of the in situ growth of NWs, in which the chemicals were continuously fed into the microfluidic reactor. The platform was also used to assess the uniformity of NWs grown quickly in a 10-mm-wide microchamber, which was intentionally chosen to be 20 times wider than those used in previous attempts because it can accommodate applications requiring a large surface of interaction while still taking advantage of submillimeter height. Further observations included the effects of varying the flow rate on the NW diameter and length in addition to a synergetic effect of continuous renewal of the growth solution and the confined environment of the chemical reaction.

3.
Micromachines (Basel) ; 11(5)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354147

ABSTRACT

Semiconductor and micro-electromechanical system (MEMS) technologies have been already proved as strong solutions for producing miniaturized optical spectrometers, light sources and photodetectors. However, the implementation of optical absorption spectroscopy for in-situ gas analysis requires further integration of a gas cell using the same technologies towards full integration of a complete gas analysis system-on-chip. Here, we propose design guidelines and experimental validation of a gas cell fabricated using MEMS technology. The architecture is based on a circular multi-pass gas cell in a miniaturized form. Simulation results based on the proposed modeling scheme helps in determining the optimum dimensions of the gas cell, given the constraints of micro-fabrication. The carbon dioxide spectral signature is successfully measured using the proposed integrated multi-pass gas cell coupled with a MEMS-based spectrometer.

4.
Sensors (Basel) ; 20(3)2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32050607

ABSTRACT

Air pollution is one of the major environmental issues that humanity is facing. Considering Indoor Air Quality (IAQ), Volatile Organic Compounds (VOCs) are among the most harmful gases that need to be detected, but also need to be eliminated using air purification technologies. In this work, we tackle both problems simultaneously by introducing an experimental setup enabling continuous measurement of the VOCs by online absorption spectroscopy using a MEMS-based Fourier Transform infrared (FTIR) spectrometer, while those VOCs are continuously eliminated by continuous adsorption and photocatalysis, using zinc oxide nanowires (ZnO-NWs). The proposed setup enabled a preliminary study of the mechanisms involved in the purification process of acetone and toluene, taken as two different VOCs, also typical of those that can be found in tobacco smoke. Our experiments revealed very different behaviors for those two gases. An elimination ratio of 63% in 3 h was achieved for toluene, while it was only 14% for acetone under same conditions. Adsorption to the nanowires appears as the dominant mechanism for the acetone, while photocatalysis is dominant in case of the toluene.

5.
Nano Lett ; 19(4): 2509-2515, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30920842

ABSTRACT

We propose spectral domain attenuated reflectometry (SDAR) for fast characterization of nanomaterial growth. The method is demonstrated here for zinc oxide (ZnO) nanowires (NWs) which are grown vertically in random forest fashion showing that it is not limited to well-ordered NWs. We show how SDAR can provide, on the basis of a single measured spectrum, simultaneous information on nanowire length, nanowire density (through nanowire/air filling ratio), and crystalline quality (through band gap). The robustness of the proposed method is assessed first through comparison with information obtained from SEM and XRD taken as reference. In SDAR, the process for fast extraction of NW thickness and filling ratio values  makes use of the interference pattern contrast and the spectral periodicity in the reflection response which involve a best fit of the measured spectra with simple theoretical modeling based on the effective medium approach, achieved with a mean square error down to 0.1%. The results also suggest the existence of either 2 or 3 layers of different effective refractive index, hence providing insight on possible growth mechanisms.

6.
Article in English | MEDLINE | ID: mdl-24177868

ABSTRACT

The synthesis and optical properties of three new fluorescent alkoxy-substituted thieno[3,2-b]indole (TI) derivatives, including 7-methoxy thieno[3,2-b]indole (7-MeOTI), 6,7- methylenedioxythieno[3,2-b]indole (6,7-MDTI) and 6,7-dihexyloxythieno[3,2-b]indole, (6,7-DHTI), were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF), lifetimes (τF), and other photophysical parameters of the three TI derivatives were measured in DMSO solutions at room temperature. Theoretical electronic absorption and fluorescence spectra were also calculated by means of a molecular orbital (MO) method. For all three alkoxy-TI derivatives, the fluorescence emission maximum wavelength was significantly red shifted relative to un-substituted TI, which was attributed to delocalization of the fused hetero-aromatic ring π electronic system by the electron-donating alkoxy group(s). ΦF values varied from 0.12 to 0.19, according to the compound. τF were short, in the range 0.56-1.13 ns.


Subject(s)
Alcohols/chemistry , Fluorescent Dyes/chemistry , Indoles/chemistry , Fluorescent Dyes/chemical synthesis , Indoles/chemical synthesis , Models, Molecular , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...