Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 145: 104260, 2019 07.
Article in English | MEDLINE | ID: mdl-31059789

ABSTRACT

Src tyrosine kinase (TK), a redox-sensitive protein overexpressed in dystrophin-deficient muscles, can contribute to damaging signaling by phosphorylation and degradation of ß-dystroglycan (ß-DG). We performed a proof-of-concept preclinical study to validate this hypothesis and the benefit-safety ratio of a pharmacological inhibition of Src-TK in Duchenne muscular dystrophy (DMD). Src-TK inhibitors PP2 and dasatinib were administered for 5 weeks to treadmill-exercised mdx mice. The outcome was evaluated in vivo and ex vivo on functional, histological and biochemical disease-related parameters. Considering the importance to maintain a proper myogenic program, the potential cytotoxic effects of both compounds, as well as their cytoprotection against oxidative stress-induced damage, was also assessed in C2C12 cells. In line with the hypothesis, both compounds restored the level of ß-DG and reduced its phosphorylated form without changing basal expression of genes of interest, corroborating a mechanism at post-translational level. The histological profile of gastrocnemius muscle was slightly improved as well as the level of plasma biomarkers. However, amelioration of in vivo and ex vivo functional parameters was modest, with PP2 being more effective than dasatinib. Both compounds reached appreciable levels in skeletal muscle and liver, supporting proper animal exposure. Dasatinib exerted a greater concentration-dependent cytotoxic effect on C2C12 cells than the more selective PP2, while being less protective against H2O2 cytotoxicity, even though at concentrations higher than those experienced during in vivo treatments. Our results support the interest of Src-TK as drug target in dystrophinopathies, although further studies are necessary to assess the therapeutic potential of inhibitors in DMD.


Subject(s)
Dasatinib , Muscular Dystrophy, Animal/drug therapy , Muscular Dystrophy, Duchenne/drug therapy , Protein Kinase Inhibitors , Pyrimidines , src-Family Kinases/antagonists & inhibitors , Animals , Cell Line , Cell Survival/drug effects , Dasatinib/pharmacokinetics , Dasatinib/pharmacology , Dasatinib/therapeutic use , Dystroglycans/genetics , Dystroglycans/metabolism , Liver/metabolism , Male , Mice, Inbred mdx , Muscle Fatigue/drug effects , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/physiology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Reproducibility of Results , Torque
2.
Neuropathol Appl Neurobiol ; 37(3): 243-56, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20618838

ABSTRACT

AIMS: Glucocorticoids are the sole drugs clinically used in Duchenne muscular dystrophy, in spite of the relevant side effects. Combination of glucocorticoids with synergistic drugs may be one strategy to lower doses and control side effects, meanwhile providing wider control of the complex pathology. This study is a preclinical evaluation of the effect of a combined treatment of α-methyl-prednisolone (PDN) with taurine, a safe aminoacid with positive effects on some pathology-related events. METHODS: PDN (1 mg/kg/day i.p.) and taurine (1 g/kg/day orally) were administered either alone or in combination, for 4-8 weeks to male dystrophic mdx mice chronically exercised on a treadmill. Effects were assessed in vivo and ex vivo with a variety of methodological approaches. RESULTS: In vivo, each treatment significantly increased fore limb strength, a marked synergistic effect being observed with the combination PDN + taurine. Ex vivo, PDN + taurine completely restored the mechanical threshold, an electrophysiological index of calcium homeostasis, of extensor digitorum longus myofibres and the benefit was greater than for PDN alone. In parallel, the overactivity of voltage-independent cation channels in dystrophic myofibres was reduced. No effects were observed on plasma levels of creatine kinase, while lactate dehydrogenase was decreased by taurine and, to a minor extent, by PDN + taurine. A similar histology profile was observed in PDN and PDN + taurine-treated muscles. PDN + taurine significantly increased taurine level in fast-twitch muscle and brain, by high-pressure liquid chromatography analysis. CONCLUSIONS: The combination PDN + taurine has additive actions on in vivo and ex vivo functional end points, with less evident advantages on histopathology and biochemical markers of the disease.


Subject(s)
Glucocorticoids/administration & dosage , Methylprednisolone/administration & dosage , Muscle, Skeletal/drug effects , Muscular Dystrophy, Animal/drug therapy , Muscular Dystrophy, Duchenne/drug therapy , Taurine/administration & dosage , Animals , Chromatography, High Pressure Liquid , Creatine Kinase/blood , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , L-Lactate Dehydrogenase/blood , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle Strength/drug effects , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...