Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(22): 10617-10624, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37948635

ABSTRACT

The development of quantum simulators, artificial platforms where the predictions of many-body theories of correlated quantum materials can be tested in a controllable and tunable way, is one of the main challenges of condensed matter physics. Here we introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials. We demonstrate that optical injection of quantum confined excitons in this system realizes the two main features that ubiquitously pervade the phase diagram of many quantum materials: collective phenomena, in which long-range orders emerge from incoherent fluctuations, and the excitonic Mott transition, which has one-to-one correspondence with the insulator-to-metal transition described by the repulsive Hubbard model in a magnetic field. Our results demonstrate that time-resolved experiments provide a quantum simulator that is able to span a parameter range relevant for a broad class of phenomena, such as superconductivity and charge-density waves.

2.
Phys Rev Lett ; 131(19): 193604, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38000432

ABSTRACT

We develop a Gutzwiller theory for the nonequilibrium steady states of a strongly interacting photon fluid driven by a non-Markovian incoherent pump. In particular, we explore the collective modes of the system across the out-of-equilibrium insulator-superfluid transition of the system, characterizing the diffusive Goldstone mode in the superfluid phase and the excitation of particles and holes in the insulating one. Observable features in the pump-and-probe optical response of the system are highlighted. Our predictions are experimentally accessible to state-of-the-art circuit-QED devices and open the way for the study of novel driven-dissipative many-body scenarios with no counterparts at equilibrium.

3.
Phys Rev Lett ; 130(6): 066401, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36827570

ABSTRACT

We demonstrate that a finite-doping quantum critical point (QCP) naturally descends from the existence of a first-order Mott transition in the phase diagram of a strongly correlated material. In a prototypical case of a first-order Mott transition the surface associated with the equation of state for the homogeneous system is "folded" so that in a range of parameters stable metallic and insulating phases exist and are connected by an unstable metallic branch. Here we show that tuning the chemical potential, the zero-temperature equation of state gradually unfolds. Under general conditions, we find that the Mott transition evolves into a first-order transition between two metals, associated with a phase separation region ending in the finite-doping QCP. This scenario is here demonstrated solving a minimal multiorbital Hubbard model relevant for the iron-based superconductors, but its origin-the splitting of the atomic ground state multiplet by a small energy scale, here Hund's coupling-is much more general. A strong analogy with cuprate superconductors is traced.

4.
Nat Commun ; 12(1): 6904, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34824212

ABSTRACT

Understanding the mechanism of heat transfer in nanoscale devices remains one of the greatest intellectual challenges in the field of thermal dynamics, by far the most relevant under an applicative standpoint. When thermal dynamics is confined to the nanoscale, the characteristic timescales become ultrafast, engendering the failure of the common description of energy propagation and paving the way to unconventional phenomena such as wave-like temperature propagation. Here, we explore layered strongly correlated materials as a platform to identify and control unconventional electronic heat transfer phenomena. We demonstrate that these systems can be tailored to sustain a wide spectrum of electronic heat transport regimes, ranging from ballistic, to hydrodynamic all the way to diffusive. Within the hydrodynamic regime, wave-like temperature oscillations are predicted up to room temperature. The interaction strength can be exploited as a knob to control the dynamics of temperature waves as well as the onset of different thermal transport regimes.

5.
Phys Rev Lett ; 125(17): 177001, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156687

ABSTRACT

Multiorbital systems such as the iron-based superconductors provide a new avenue to attack the long-standing problem of superconductivity in strongly correlated systems. In this work we study the superconductivity driven by a generic bosonic mechanism in a multiorbital model including the full dynamical electronic correlations induced by the Hubbard U and the Hund's coupling. We show that superconductivity survives much more in a Hund's metal than in an ordinary correlated metal with the same degree of correlation. The redistribution of spectral weight characteristic of the Hund's metal reflects also in the enhancement of the orbital-selective character of the superconducting gaps, in agreement with experiments in iron-based superconductors.

6.
Phys Rev Lett ; 125(16): 166402, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33124875

ABSTRACT

We clarify the origin of the strikingly different spectroscopic properties of the chemically similar compounds NaOsO_{3} and LiOsO_{3}. Our first-principle, many-body analysis demonstrates that the highly sensitive physics of these two materials is controlled by their proximity to an adjacent Hund's-Mott insulating phase. Although 5d oxides are mildly correlated, we show that the cooperative action of intraorbital repulsion and Hund's exchange becomes the dominant physical mechanism in these materials if their t_{2g} shell is half filled. Small material specific details hence result in an extremely sharp change of the electronic mobility, explaining the surprisingly different properties of the paramagnetic high-temperature phases of the two compounds.

7.
Phys Rev Lett ; 122(18): 186401, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31144864

ABSTRACT

Multiorbital Hubbard models host strongly correlated "Hund's metals" even for interactions much stronger than the bandwidth. We characterize this interaction-resilient metal as a mixed-valence state. In particular, it can be pictured as a bridge between two strongly correlated insulators: a high-spin Mott insulator and a charge-disproportionated insulator which is stabilized by a very large Hund's coupling. This picture is confirmed comparing models with negative and positive Hund's coupling for different fillings. Our results provide a characterization of the Hund's metal state and connect its presence with charge disproportionation, which has indeed been observed in chromates and proposed to play a role in iron-based superconductors.

8.
Nat Mater ; 17(10): 855-856, 2018 10.
Article in English | MEDLINE | ID: mdl-30177689

Subject(s)
Metals
9.
Sci Adv ; 4(2): eaar1998, 2018 02.
Article in English | MEDLINE | ID: mdl-29507885

ABSTRACT

Many puzzling properties of high-critical temperature (Tc) superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wave vector parallel to the Cu-O bonds. These electronic states are most affected by the onset of antiferromagnetic correlations and charge instabilities, and they host the maximum of the anisotropic superconducting gap and pseudogap. We use time-resolved extreme-ultraviolet photoemission with proper photon energy (18 eV) and time resolution (50 fs) to disclose the ultrafast dynamics of the antinodal states in a prototypical HTSC cuprate. After photoinducing a nonthermal charge redistribution within the Cu and O orbitals, we reveal a dramatic momentum-space differentiation of the transient electron dynamics. Whereas the nodal quasiparticle distribution is heated up as in a conventional metal, new quasiparticle states transiently emerge at the antinodes, similarly to what is expected for a photoexcited Mott insulator, where the frozen charges can be released by an impulsive excitation. This transient antinodal metallicity is mapped into the dynamics of the O-2p bands, thus directly demonstrating the intertwining between the low- and high-energy scales that is typical of correlated materials. Our results suggest that the correlation-driven freezing of the electrons moving along the Cu-O bonds, analogous to the Mott localization mechanism, constitutes the starting point for any model of high-Tc superconductivity and other exotic phases of HTSC cuprates.

10.
Nano Lett ; 18(3): 2158-2164, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29473754

ABSTRACT

We demonstrate that hexagonal graphene nanoflakes with zigzag edges display quantum interference (QI) patterns analogous to benzene molecular junctions. In contrast with graphene sheets, these nanoflakes also host magnetism. The cooperative effect of QI and magnetism enables spin-dependent quantum interference effects that result in a nearly complete spin polarization of the current and holds a huge potential for spintronic applications. We understand the origin of QI in terms of symmetry arguments, which show the robustness and generality of the effect. This also allows us to devise a concrete protocol for the electrostatic control of the spin polarization of the current by breaking the sublattice symmetry of graphene, by deposition on hexagonal boron nitride, paving the way to switchable spin filters. Such a system benefits from all of the extraordinary conduction properties of graphene, and at the same time, it does not require any external magnetic field to select the spin polarization, as magnetism emerges spontaneously at the edges of the nanoflake.

11.
J Phys Condens Matter ; 29(48): 485002, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29120863

ABSTRACT

We investigate with scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) calculations the surface structures and the electronic properties of Fe1+y Te thin films grown by pulsed laser deposition. Contrary to the regular arrangement of antiferromagnetic nanostripes previously reported on cleaved single-crystal samples, the surface of Fe1+y Te thin films displays a peculiar distribution of spatially inhomogeneous nanostripes. Both STM and DFT calculations show the bias-dependent nature of such features and support the interpretation of spin-polarized tunneling between the FeTe surface and an unintentionally magnetized tip. In addition, the spatial inhomogeneity is interpreted as a purely electronic effect related to changes in hybridization and Fe-Fe bond length driven by local variations in the concentration of excess interstitial Fe cations. Unexpectedly, the surface density of states measured by STS strongly evolves with temperature in close proximity to the antiferromagnetic-paramagnetic first-order transition, and reveals a large pseudogap of 180-250 meV at about 50-65 K. We believe that in this temperature range a phase transition takes place, and the system orders and locks into particular combinations of orbitals and spins because of the interplay between excess interstitial magnetic Fe and strongly correlated d-electrons.

12.
J Phys Condens Matter ; 28(15): 153001, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26974650

ABSTRACT

Alkali-doped fullerides (A3C60 with A = K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature (Tc) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-Tc superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. This is realized by a subtle energy balance between the coupling with the Jahn-Teller phonons and Hund's coupling within the C60 molecule. The unusual form of the interaction leads to a formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave pairing. The emergent superconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly benefits from the strong correlations because the correlations suppress the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with previous model calculations. This confirms that the alkali-doped fullerides are a new type of unconventional superconductors, where the unusual synergy between the phonons and Coulomb interactions drives the high-Tc superconductivity.

13.
Sci Adv ; 1(7): e1500568, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26601242

ABSTRACT

Alkali-doped fullerides A 3C60 (A = K, Rb, Cs) are surprising materials where conventional phonon-mediated superconductivity and unconventional Mott physics meet, leading to a remarkable phase diagram as a function of volume per C60 molecule. We address these materials with a state-of-the-art calculation, where we construct a realistic low-energy model from first principles without using a priori information other than the crystal structure and solve it with an accurate many-body theory. Remarkably, our scheme comprehensively reproduces the experimental phase diagram including the low-spin Mott-insulating phase next to the superconducting phase. More remarkably, the critical temperatures T c's calculated from first principles quantitatively reproduce the experimental values. The driving force behind the surprising phase diagram of A 3C60 is a subtle competition between Hund's coupling and Jahn-Teller phonons, which leads to an effectively inverted Hund's coupling. Our results establish that the fullerides are the first members of a novel class of molecular superconductors in which the multiorbital electronic correlations and phonons cooperate to reach high T c s-wave superconductivity.

14.
Phys Rev Lett ; 115(8): 087202, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26340204

ABSTRACT

We examine the electronic properties of the newly discovered "ferroelectric metal" LiOsO3 combining density-functional and dynamical mean-field theories. We show that the material is close to a Mott transition and that electronic correlations can be tuned to engineer a Mott multiferroic state in the 1/1 superlattice of LiOsO3 and LiNbO3. We use electronic structure calculations to predict that the (LiOsO3)1/(LiNbO3)1 superlattice exhibits strong coupling between magnetic and ferroelectric degrees of freedom with a ferroelectric polarization of 41.2 µC cm(-2), Curie temperature of 927 K, and Néel temperature of 379 K. Our results support a route towards high-temperature multiferroics, i.e., driving nonmagnetic polar metals into correlated insulating magnetic states.

15.
Phys Rev Lett ; 115(25): 257001, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26722940

ABSTRACT

Motivated by recent ultrafast pump-probe experiments on high-temperature superconductors, we discuss the transient dynamics of a d-wave BCS model after a quantum quench of the interaction parameter. We find that the existence of gap nodes, with the associated nodal quasiparticles, introduces a decay channel which makes the dynamics much faster than in the conventional s-wave model. For every value of the quench parameter, the superconducting gap rapidly converges to a stationary value smaller than the one at equilibrium. Using a sudden approximation for the gap dynamics, we find an analytical expression for the reduction of spectral weight close to the nodes, which is in qualitative agreement with recent experiments.

16.
Nat Commun ; 5: 5112, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25290587

ABSTRACT

The non-equilibrium approach to correlated electron systems is often based on the paradigm that different degrees of freedom interact on different timescales. In this context, photo-excitation is treated as an impulsive injection of electronic energy that is transferred to other degrees of freedom only at later times. Here, by studying the ultrafast dynamics of quasi-particles in an archetypal strongly correlated charge-transfer insulator (La2CuO(4+δ)), we show that the interaction between electrons and bosons manifests itself directly in the photo-excitation processes of a correlated material. With the aid of a general theoretical framework (Hubbard-Holstein Hamiltonian), we reveal that sub-gap excitation pilots the formation of itinerant quasi-particles, which are suddenly dressed by an ultrafast reaction of the bosonic field.

17.
J Phys Condens Matter ; 26(38): 385301, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25185708

ABSTRACT

Using density-functional calculations (DFT) and a tight-binding model, we investigate the origin of distinct favorable geometries which depend on the type of graphyne used. The change in the H geometry is described in terms of the tuning of the hopping between sp(2)-bonded C atoms and sp-bonded C atoms hybridized with the H atoms. We find that the different preferred geometry for each type of graphyne is associated with the electronic effects due to different symmetries rather than a steric effect minimizing the repulsive interaction between the H atoms. The band gaps are significantly tuned as the hopping varies, except in α-graphyne, in agreement with the result of our previous DFT study (Koo J et al 2013 J. Phys. Chem. C 117 11960). Our model can be used to describe the geometry and electronic properties of hydrogenated graphynes.

18.
Phys Rev Lett ; 112(17): 177001, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24836267

ABSTRACT

We show that electron- and hole-doped BaFe(2)As(2) are strongly influenced by a Mott insulator that would be realized for half-filled conduction bands. Experiments show that weakly and strongly correlated conduction electrons coexist in much of the phase diagram, a differentiation which increases with hole doping. This selective Mottness is caused by the Hund's coupling effect of decoupling the charge excitations in different orbitals. Each orbital then behaves as a single-band doped Mott insulator, where the correlation degree mainly depends on how doped is each orbital from half filling. Our scenario reconciles contrasting evidences on the electronic correlation strength, implies a strong asymmetry between hole and electron doping, and establishes a deep connection with the cuprates.

19.
Science ; 339(6118): 425-8, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23349285

ABSTRACT

Molecular ferroelectrics are highly desirable for their easy and environmentally friendly processing, light weight, and mechanical flexibility. We found that diisopropylammonium bromide (DIPAB), a molecular crystal processed from aqueous solution, is a ferroelectric with a spontaneous polarization of 23 microcoulombs per square centimeter [close to that of barium titanate (BTO)], high Curie temperature of 426 kelvin (above that of BTO), large dielectric constant, and low dielectric loss. DIPAB exhibits good piezoelectric response and well-defined ferroelectric domains. These attributes make it a molecular alternative to perovskite ferroelectrics and ferroelectric polymers in sensing, actuation, data storage, electro-optics, and molecular or flexible electronics.

20.
Phys Rev Lett ; 109(10): 107601, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-23005326

ABSTRACT

With a combined ab initio density functional and model Hamiltonian approach we establish that in the recently discovered multiferroic phase of the manganite Sr(1/2)Ba(1/2)MnO3 the polar distortion of Mn and O ions is stabilized via enhanced in-plane Mn-O hybridizations. The magnetic superexchange interaction is very sensitive to the polar bond-bending distortion, and we find that this dependence directly causes a strong magnetoelectric coupling. This novel mechanism for multiferroicity is consistent with the experimentally observed reduced ferroelectric polarization upon the onset of magnetic ordering.

SELECTION OF CITATIONS
SEARCH DETAIL
...