Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biodegradation ; 32(4): 389-401, 2021 08.
Article in English | MEDLINE | ID: mdl-33864197

ABSTRACT

The contamination of soils by oily compounds has several environmental impacts, which can be reversed through bioremediation, using biosurfactants as auxiliaries in the biodegradation process. In this study, we aimed to perform ex situ bioremediation of biodiesel-contaminated soil using biosurfactants produced by Bacillus methylotrophicus. A crude biosurfactant was produced in a whey-based culture medium supplemented with nutrients and was later added to biodiesel-contaminated clayey soil. The produced lipopeptide biosurfactant could reduce the surface tension of the fermentation broth to 30.2 mN/m. An increase in the microbial population was observed in the contaminated soil; this finding can be corroborated by the finding of increased CO2 release over days of bioremediation. Compared with natural attenuation, the addition of a lower concentration of the biosurfactant (0.5% w/w in relation to the mass of diesel oil) to the soil increased biodiesel removal by about 16% after 90 days. The added biosurfactant did not affect the retention of the contaminant in the soil, which is an important factor to be considered when applying in situ bioremediation technologies.


Subject(s)
Petroleum , Soil Pollutants , Bacillus , Biodegradation, Environmental , Biofuels , Clay , Soil , Soil Microbiology , Soil Pollutants/analysis , Surface-Active Agents
2.
Ecotoxicol Environ Saf ; 201: 110798, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32526591

ABSTRACT

Despite constant progress in the understanding of the mechanisms related to the effects of biosurfactants in the bioremediation processes of oily residues, the possibility of antagonist effects on microbial growth and the production in situ of these compounds must be elucidated. The aims of this work were a) to evaluate the effects of the addition of a homemade biosurfactant of Bacillus methylotrophicus on the microbial count in soil in order to determine the possibility of inhibitory effects, and b) to accomplish biostimulation using media prepared with whey and bioaugmentation with B. methylotrophicus, analyzing the effects on the bioremediation of diesel oil and evidencing the in situ production of biosurfactants through effects on surface tension. The homemade bacterial biosurfactant did not present inhibitory effects acting as a biostimulant until 4000 mg biosurfactant/kg of soil. The biostimulation and bioaugmentation presented similar better results (p > 0.05) with the degradation of oil (~60%) than natural attenuation due to the low quantities of biostimulants added. For bioaugmentated and biostimulated soils, a decrease of surface tension between 30 and 60 days was observed, indicating the production of tensoactives in the soil, which was not observed in natural attenuation or a control treatment.


Subject(s)
Bacillus/drug effects , Clay/chemistry , Petroleum/analysis , Soil Pollutants/analysis , Soil/chemistry , Surface-Active Agents/pharmacology , Bacillus/growth & development , Bacillus/metabolism , Biodegradation, Environmental , Petroleum/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Surface-Active Agents/chemistry
3.
Environ Sci Pollut Res Int ; 24(26): 20831-20843, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28815413

ABSTRACT

Research on the influence of biosurfactants on the efficiency of in situ bioremediation of contaminated soil is continuously growing. Despite the constant progress in understanding the mechanisms involved in the effects of biosurfactants, there are still many factors that are not sufficiently elucidated. There is a lack of research on autochthonous or exogenous microbial metabolism when biostimulation or bioaugmentation is carried out to produce biosurfactants at contaminated sites. In addition, studies on the application of techniques that measure the biosurfactants produced in situ are needed. This is important because, although the positive influence of biosurfactants is often reported, there are also studies where no effect or negative effects have been observed. This review aimed to examine some studies on factors that can improve the production of biosurfactants in soils during in situ bioremediation. Moreover, this work reviews the methodologies that can be used for measuring the production of these biocomposts. We reviewed studies on the potential of biosurfactants to improve the bioremediation of hydrocarbons, as well as the limitations of methods for the production of these biomolecules by microorganisms in soil.


Subject(s)
Biodegradation, Environmental , Soil Pollutants , Surface-Active Agents , Hydrocarbons/metabolism , Soil , Soil Microbiology , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...