Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(10)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37694742

ABSTRACT

We demonstrate the possibility of a coupling between the magnetization direction of a ferromagnet and the tilting angle of adsorbed achiral molecules. To illustrate the mechanism of the coupling, we analyze a minimal Stoner model that includes Rashba spin-orbit coupling due to the electric field on the surface of the ferromagnet. The proposed mechanism allows us to study magnetic anisotropy of the system with an extended Stoner-Wohlfarth model and argue that adsorbed achiral molecules can change magnetocrystalline anisotropy of the substrate. Our research aims to motivate further experimental studies of the current-free chirality induced spin selectivity effect involving both enantiomers.

2.
Sci Rep ; 10(1): 9088, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32493913

ABSTRACT

Within the Ginzburg-Landau functional framework for the superconducting transition, we analyze the fluctuation-driven shift of the critical temperature. In addition to the order parameter fluctuations, we also take into account the fluctuations of the vector potential above its vacuum. We detail the approximation scheme to include the fluctuating fields contribution, based on the Hartree-Fock-Bogoliubov-Popov framework. We give explicit results for d = 2 and d = 3 spatial dimensions, in terms of easily accessible experimental parameters such as the Ginzburg-Levanyuk number Gi(d), which is related to the width of the critical region where fluctuations cannot be neglected, and the Ginzburg-Landau parameter κ, defined as the ratio between the magnetic penetration length and the coherence one.

3.
Phys Rev Lett ; 119(21): 215302, 2017 Nov 24.
Article in English | MEDLINE | ID: mdl-29219392

ABSTRACT

We systematically investigate the zero temperature phase diagram of bosons interacting via dipolar interactions in three dimensions in free space via path integral Monte Carlo simulations with a few hundreds of particles and periodic boundary conditions based on the worm algorithm. Upon increasing the strength of the dipolar interaction and at sufficiently high densities we find a wide region where filaments are stabilized along the direction of the external field. Most interestingly by computing the superfluid fraction we conclude that the superfluidity is anisotropic and is greatly suppressed along the orthogonal plane. Finally, we perform simulations at finite temperature confirming the stability of the filaments against thermal fluctuations and provide an estimate of the superfluid fraction in the weak coupling limit in the framework of the Landau two-fluid model.

4.
Sci Rep ; 7(1): 13358, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042666

ABSTRACT

Laser induced transitions between internal states of atoms have been playing a fundamental role to manipulate atomic clouds for many decades. In absence of interactions each atom behaves independently and their coherent quantum dynamics is described by the Rabi model. Since the experimental observation of Bose condensation in dilute gases, static and dynamical properties of multicomponent quantum gases have been extensively investigated. Moreover, at very low temperatures quantum fluctuations crucially affect the equation of state of many-body systems. Here we study the effects of quantum fluctuations on a Rabi-coupled two-component Bose gas of interacting alkali atoms. The divergent zero-point energy of gapless and gapped elementary excitations of the uniform system is properly regularized obtaining a meaningful analytical expression for the beyond-mean-field equation of state. In the case of attractive inter-particle interaction we show that the quantum pressure arising from Gaussian fluctuations can prevent the collapse of the mixture with the creation of a self-bound droplet. We characterize the droplet phase and discover an energetic instability above a critical Rabi frequency provoking the evaporation of the droplet. Finally, we suggest an experiment to observe such quantum droplets using Rabi-coupled internal states of K39 atoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...