Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 178: 113975, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309918

ABSTRACT

Origin authentication methods are pivotal in counteracting frauds and provide evidence for certification systems. For these reasons, geographical origin authentication methods are used to ensure product origin. This study focused on the origin authentication (i.e. at the producer level) of a typical mountain cheese origin using various approaches, including shotgun metagenomics, volatilome, near infrared spectroscopy, stable isotopes, and elemental analyses. DNA-based analysis revealed that viral communities achieved a higher classification accuracy rate (97.4 ± 2.6 %) than bacterial communities (96.1 ± 4.0 %). Non-starter lactic acid bacteria and phages specific to each origin were identified. Volatile organic compounds exhibited potential clusters according to cheese origin, with a classification accuracy rate of 90.0 ± 11.1 %. Near-infrared spectroscopy showed lower discriminative power for cheese authentication, yielding only a 76.0 ± 31.6 % classification accuracy rate. Model performances were influenced by specific regions of the infrared spectrum, possibly associated with fat content, lipid profile and protein characteristics. Furthermore, we analyzed the elemental composition of mountain Caciotta cheese and identified significant differences in elements related to dairy equipment, macronutrients, and rare earth elements among different origins. The combination of elements and isotopes showed a decrease in authentication performance (97.0 ± 3.1 %) compared to the original element models, which were found to achieve the best classification accuracy rate (99.0 ± 0.01 %). Overall, our findings emphasize the potential of multi-omics techniques in cheese origin authentication and highlight the complexity of factors influencing cheese composition and hence typicity.


Subject(s)
Cheese , Cheese/analysis , Spectroscopy, Near-Infrared , Isotopes/analysis , Isotopes/chemistry , DNA , Italy
2.
Sci Rep ; 13(1): 16867, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803040

ABSTRACT

The outbreak of Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, forced us to face a pandemic with unprecedented social, economic, and public health consequences. Several nations have launched campaigns to immunize millions of people using various vaccines to prevent infections. Meanwhile, therapeutic approaches and discoveries continuously arise; however, identifying infected patients that are going to experience the more severe outcomes of COVID-19 is still a major need, to focus therapeutic efforts, reducing hospitalization and mitigating drug adverse effects. Microbial communities colonizing the respiratory tract exert significant effects on host immune responses, influencing the susceptibility to infectious agents. Through 16S rDNAseq we characterized the upper airways' microbiota of 192 subjects with nasopharyngeal swab positive for SARS-CoV-2. Patients were divided into groups based on the presence of symptoms, pneumonia severity, and need for oxygen therapy or intubation. Indeed, unlike most of the literature, our study focuses on identifying microbial signatures predictive of disease progression rather than on the probability of infection itself, for which a consensus is lacking. Diversity, differential abundance, and network analysis at different taxonomic levels were synergistically adopted, in a robust bioinformatic pipeline, highlighting novel possible taxa correlated with patients' disease progression to intubation.


Subject(s)
COVID-19 , Microbiota , Humans , SARS-CoV-2 , Disease Outbreaks , Disease Progression
3.
Sci Rep ; 13(1): 6303, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072468

ABSTRACT

A growing body of evidence links gut microbiota changes with inflammatory bowel disease (IBD), raising the potential benefit of exploiting metagenomics data for non-invasive IBD diagnostics. The sbv IMPROVER metagenomics diagnosis for inflammatory bowel disease challenge investigated computational metagenomics methods for discriminating IBD and nonIBD subjects. Participants in this challenge were given independent training and test metagenomics data from IBD and nonIBD subjects, which could be wither either raw read data (sub-challenge 1, SC1) or processed Taxonomy- and Function-based profiles (sub-challenge 2, SC2). A total of 81 anonymized submissions were received between September 2019 and March 2020. Most participants' predictions performed better than random predictions in classifying IBD versus nonIBD, Ulcerative Colitis (UC) versus nonIBD, and Crohn's Disease (CD) versus nonIBD. However, discrimination between UC and CD remains challenging, with the classification quality similar to the set of random predictions. We analyzed the class prediction accuracy, the metagenomics features by the teams, and computational methods used. These results will be openly shared with the scientific community to help advance IBD research and illustrate the application of a range of computational methodologies for effective metagenomic classification.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/genetics , Colitis, Ulcerative/diagnosis , Crohn Disease/diagnosis , Crohn Disease/genetics , Metagenomics , Gastrointestinal Microbiome/genetics
4.
PLoS Comput Biol ; 18(9): e1010467, 2022 09.
Article in English | MEDLINE | ID: mdl-36074761

ABSTRACT

The development of increasingly efficient and cost-effective high throughput DNA sequencing techniques has enhanced the possibility of studying complex microbial systems. Recently, researchers have shown great interest in studying the microorganisms that characterise different ecological niches. Differential abundance analysis aims to find the differences in the abundance of each taxa between two classes of subjects or samples, assigning a significance value to each comparison. Several bioinformatic methods have been specifically developed, taking into account the challenges of microbiome data, such as sparsity, the different sequencing depth constraint between samples and compositionality. Differential abundance analysis has led to important conclusions in different fields, from health to the environment. However, the lack of a known biological truth makes it difficult to validate the results obtained. In this work we exploit metaSPARSim, a microbial sequencing count data simulator, to simulate data with differential abundance features between experimental groups. We perform a complete comparison of recently developed and established methods on a common benchmark with great effort to the reliability of both the simulated scenarios and the evaluation metrics. The performance overview includes the investigation of numerous scenarios, studying the effect on methods' results on the main covariates such as sample size, percentage of differentially abundant features, sequencing depth, feature variability, normalisation approach and ecological niches. Mainly, we find that methods show a good control of the type I error and, generally, also of the false discovery rate at high sample size, while recall seem to depend on the dataset and sample size.


Subject(s)
Benchmarking , Microbiota , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Reproducibility of Results
5.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-37882604

ABSTRACT

BACKGROUND: Biomarker discovery exploiting feature importance of machine learning has risen recently in the microbiome landscape with its high predictive performance in several disease states. To have a concrete selection among a high number of features, recursive feature elimination (RFE) has been widely used in the bioinformatics field. However, machine learning-based RFE has factors that decrease the stability of feature selection. In this article, we suggested methods to improve stability while sustaining performance. RESULTS: We exploited the abundance matrices of the gut microbiome (283 taxa at species level and 220 at genus level) to classify between patients with inflammatory bowel disease (IBD) and healthy control (1,569 samples). We found that applying an already published data transformation before RFE improves feature stability significantly. Moreover, we performed an in-depth evaluation of different variants of the data transformation and identify those that demonstrate better improvement in stability while not sacrificing classification performance. To ensure a robust comparison, we evaluated stability using various similarity metrics, distances, the common number of features, and the ability to filter out noise features. We were able to confirm that the mapping by the Bray-Curtis similarity matrix before RFE consistently improves the stability while maintaining good performance. Multilayer perceptron algorithm exhibited the highest performance among 8 different machine learning algorithms when a large number of features (a few hundred) were considered based on the best performance across 100 bootstrapped internal test sets. Conversely, when utilizing only a limited number of biomarkers as a trade-off between optimal performance and method generalizability, the random forest algorithm demonstrated the best performance. Using the optimal pipeline we developed, we identified 14 biomarkers for IBD at the species level and analyzed their roles using Shapley additive explanations. CONCLUSION: Taken together, our work not only showed how to improve biomarker discovery in the metataxonomic field without sacrificing classification performance but also provided useful insights for future comparative studies.


Subject(s)
Inflammatory Bowel Diseases , Machine Learning , Humans , Biomarkers , Algorithms , Computational Biology/methods , Inflammatory Bowel Diseases/diagnosis
6.
Curr Genomics ; 22(4): 267-290, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-35273458

ABSTRACT

In the current research landscape, microbiota composition studies are of extreme interest, since it has been widely shown that resident microorganisms affect and shape the ecological niche they inhabit. This complex micro-world is characterized by different types of interactions. Understanding these relationships provides a useful tool for decoding the causes and effects of communities' organizations. Next-Generation Sequencing technologies allow to reconstruct the internal composition of the whole microbial community present in a sample. Sequencing data can then be investigated through statistical and computational method coming from network theory to infer the network of interactions among microbial species. Since there are several network inference approaches in the literature, in this paper we tried to shed light on their main characteristics and challenges, providing a useful tool not only to those interested in using the methods, but also to those who want to develop new ones. In addition, we focused on the frameworks used to produce synthetic data, starting from the simulation of network structures up to their integration with abundance models, with the aim of clarifying the key points of the entire generative process.

SELECTION OF CITATIONS
SEARCH DETAIL
...