Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(22): 225301, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877914

ABSTRACT

High-frequency oscillations are observed in a neon plasma of a direct current magnetron discharge. At low discharge currents, we see highly coherent 60 MHz fluctuations. Above a distinct current threshold, secondary 5-10 MHz fluctuations emerge in addition to turbulent fluctuations in the 60-100 MHz range. The oscillations in the total discharge current suggest axial wave propagation. A lower-hybrid wave theory is invoked to model the high-frequency oscillations. We attribute the low-frequency modes to a turbulence-driven inverse cascade process, as suggested by recent simulations.

2.
Rev Sci Instrum ; 92(3): 033544, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33819995

ABSTRACT

We present experimental studies of inverted-corona targets as neutron sources at the OMEGA Laser Facility and the National Ignition Facility (NIF). Laser beams are directed onto the inner walls of a capsule via laser-entrance holes (LEHs), heating the target interior to fusion conditions. The fusion fuel is provided either as a wall liner, e.g., deuterated plastic (CD), or as a gas fill, e.g., D2 gas. Such targets are robust to low-mode drive asymmetries, allowing for single-sided laser drive. On OMEGA, 1.8-mm-diameter targets with either a 10-µm CD liner or up to 2 atm of D2-gas fill were driven with up to 18 kJ of laser energy in a 1-ns square pulse. Neutron yields of up to 1.5 × 1010 generally followed expected trends with fill pressure or laser energy, although the data imply some mix of the CH wall into the fusion fuel for either design. Comparable performance was observed with single-sided (1x LEH) or double-sided (2x LEH) drive. NIF experiments tested the platform at scaled up dimensions and energies, combining a 15-µm CD liner and a 3-atm D2-gas fill in a 4.5-mm diameter target, laser-driven with up to 330 kJ. Neutron yields up to 2.6 × 1012 were measured, exceeding the scaled yield expectation from the OMEGA data. The observed energy scaling on the NIF implies that the neutron production is gas dominated, suggesting a performance boost from using deuterium-tritium (DT) gas. We estimate that neutron yields exceeding 1014 should be readily achievable using a modest laser drive of ∼300 kJ with a DT fill.

3.
Opt Lett ; 45(9): 2486-2489, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32356797

ABSTRACT

We report on dual-polarization Dirac cones in a simple square lattice two-dimensional (2D) photonic crystal (PC) based on transmission at accidental degeneracies centered at the $k = {0}$k=0 symmetry ($ \Gamma $Γ) point. Finite difference time domain simulations are used to identify the material and geometric parameters for Dirac-like dispersion. A configuration that produces a Dirac-like point for both transverse electric and transverse magnetic polarizations at the same frequency is presented. The PC dispersion shows the expected threefold degenerate linear branch crossings at the Dirac-like point. Full-field electromagnetic wave simulations exhibit some common behaviors of devices based on Dirac-like dispersion, such as cloaking and waveguiding. The configuration works for a considerable range of the parameter space, and thus is experimentally realizable with a wide range of materials.

4.
Phys Plasmas ; 20(7): 73115, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23983449

ABSTRACT

Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

5.
Rev Sci Instrum ; 83(11): 113506, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23206061

ABSTRACT

A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s(')[1/2](1)(0)-6p(')[3/2](2) xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(2 Pt 2): 026410, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11308588

ABSTRACT

A comprehensive analysis of measurements supporting the presence of anomalous cross-field electron mobility in Hall plasma accelerators is presented. Nonintrusive laser-induced fluorescence measurements of neutral xenon and ionized xenon velocities, and various electrostatic probe diagnostic measurements are used to locally determine the effective electron Hall parameter inside the accelerator channel. These values are then compared to the classical (collision-driven) Hall parameters expected for a quiescent magnetized plasma. The results indicate that in the vicinity of the anode, where there are fewer plasma instabilities, the electron-transport mechanism is likely elastic collisions with the background neutral xenon. However, we find that in the vicinity of the discharge channel exit, where the magnetic field is the strongest and where there are intense fluctuations in the plasma properties, the inferred Hall parameter departs from the classical value, and is close to the Bohm value of (omega(ce)tau)(eff) approximately 16. These results are used to support a simple model for the Hall parameter that is based on the scalar addition of the electron collision frequencies (elastic collision induced plus fluctuation induced), as proposed by Boeuf and Garrigues [J. Appl. Phys. 84, 3541 (1998)]. The results also draw attention to the possible role of fluctuations in enhancing electron transport in regions where the electrons are highly magnetized.

7.
Appl Opt ; 37(3): 486-95, 1998 Jan 20.
Article in English | MEDLINE | ID: mdl-18268611

ABSTRACT

Laser-induced fluorescence of the Balmer-alpha (H(alpha)) transition of atomic hydrogen was performed within the nozzle of a 1-kW class radiatively cooled arcjet thruster operating on hydrogen and synthesized-hydrazine propellants. Axial velocities were determined from the Doppler shift of the H(alpha) line center relative to a stationary reference, whereas translational temperatures and electron number densities were determined from a line-shape analysis of the H(alpha) transition. The results are compared with a numerical model and indicate excellent agreement with the velocities, as well as temperatures near the nozzle exit. There are discrepancies, however, in the temperatures far upstream of the exit and in the electron densities, suggesting needed improvements in the modeling of the recombination chemistry.

8.
Appl Opt ; 35(24): 4913-8, 1996 Aug 20.
Article in English | MEDLINE | ID: mdl-21102917

ABSTRACT

Laser-induced fluorescence of the H(α) transition of atomic hydrogen has previously been performed in the plume of a hydrogen arcjet thruster. Measurements of plasma velocity and temperature, based on the Doppler shift and broadening of the H(α) line shape, were previously published [Appl. Opt. 32, 6117 (1993)]. In that paper the Stark broadening of the H(α) transition was estimated from static-ion calculations performed in the early 1970's and found to be negligible in comparison with the Doppler broadening. However, more recent dynamic-ion calculations have shown the Stark broadening to be considerably larger than was previously assumed, resulting in inaccurate temperature measurements. We present a reanalysis of the fluorescence data, taking into account the improved Stark broadening calculations. The correct atomic hydrogen translation temperature and electron number density are obtained from the Doppler and Stark broadening components of the measured line shape. The results indicate a substantial drop in temperature from those previously reported.

9.
Appl Opt ; 32(30): 6117-27, 1993 Oct 20.
Article in English | MEDLINE | ID: mdl-20856439

ABSTRACT

A diagnostic has been developed to measure velocity and translational temperature in the plume of a 1-kW-class arcjet thruster operating on hydrogen. Laser-induced fluorescence with a narrow-band cw laser is used to probe the Balmer α transition of excited atomic hydrogen. The velocity is determined from the Doppler shift of the fluorescence excitation spectrum, whereas the temperature is inferred from the lineshape. Analysis shows that although Doppler broadening is the only significant broadening mechanism, the fine structure of the transition must be taken into account. Near the exit plane, axial velocities vary from 4 to 14 km/s, radial velocities vary from 0 to 4 km/s, and swirl velocities are shown to be relatively small. Temperatures from 1000 to 5000 K indicate high dissociation fractions.

10.
Appl Opt ; 26(6): 1058-67, 1987 Mar 15.
Article in English | MEDLINE | ID: mdl-20454270

ABSTRACT

The first free electron density radial profiles of a sodium plasma created by laser resonance saturation are reported. The measurements were based on Stark broadening, of the 4(2)D-3(2)P multiplet and reveal the formation of a conically shaped plasma along the path of the laser pulse, which can be attributed to strong absorption of the laser pulse along the ionization path.

SELECTION OF CITATIONS
SEARCH DETAIL
...