Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 59(12): 3742-3750, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32400501

ABSTRACT

In this paper, an analysis of the spectral composition of the scattered field from coated metallic cylinders is performed, focusing particularly on the cloaking of electrically large structures. An expression of the scattering coefficients is derived, considering both a dielectric and a metasurface coating. Modeling the metasurface as a surface impedance boundary condition, the surface impedance, which annuls one harmonic of the scattered field, is formulated in a closed and compact form. Moreover, in the case of cylinders with radius comparable with the wavelength of interest, it is demonstrated that a reduction of the scattering is possible by using a homogeneous metasurface coating, which presents a positive surface reactance. In particular, a reduction of the scattering width of 4 dB is achieved for a cylinder radius of $ a = 0.917{\lambda _0} $a=0.917λ0.

2.
Nat Commun ; 11(1): 1436, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32188844

ABSTRACT

Topological physics opens up a plethora of exciting phenomena allowing to engineer disorder-robust unidirectional flows of light. Recent advances in topological protection of electromagnetic waves suggest that even richer functionalities can be achieved by realizing topological states of quantum light. This area, however, remains largely uncharted due to the number of experimental challenges. Here, we take an alternative route and design a classical structure based on topolectrical circuits which serves as a simulator of a quantum-optical one-dimensional system featuring the topological state of two photons induced by the effective photon-photon interaction. Employing the correspondence between the eigenstates of the original problem and circuit modes, we use the designed simulator to extract the frequencies of bulk and edge two-photon bound states and evaluate the topological invariant directly from the measurements. Furthermore, we perform a reconstruction of the two-photon probability distribution for the topological state associated with one of the circuit eigenmodes.

3.
Sci Rep ; 10(1): 2413, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32051461

ABSTRACT

One of the most exciting applications of metaparticles and metasurfaces consists in the magnetic light excitation. However, the principal limitation is due to parasitic extra multipoles of electric family excited in magnetic dipole meta-particles characterized by a radiating nature and corresponding radiating losses. In this paper, we propose the "ideal magnetic dipole" with suppressed additional multipoles except of magnetic dipole moment in the scattered field from a cylindrical object by using mantle cloaking based on metasurface and on anapole concept. The considered metasurface consists of a periodic width modulated microstrip line, with a sinusoidally shaped profile unit cell printed on a dielectric substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...