Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(1): 017201, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32678656

ABSTRACT

Quantum spin liquids can be faithfully represented and efficiently characterized within the framework of projected entangled pair states (PEPS). Guided by extensive exact diagonalization and density matrix renormalization group calculations, we construct an optimized symmetric PEPS for a SU(3)_{1} chiral spin liquid on the square lattice. Characteristic features are revealed by the entanglement spectrum (ES) on an infinitely long cylinder. In all three Z_{3} sectors, the level counting of the linear dispersing modes is in full agreement with SU(3)_{1} Wess-Zumino-Witten conformal field theory prediction. Special features in the ES are shown to be in correspondence with bulk anyonic correlations, indicating a fine structure in the holographic bulk-edge correspondence. Possible universal properties of topological SU(N)_{k} chiral PEPS are discussed.

2.
Phys Rev Lett ; 118(6): 067204, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28234502

ABSTRACT

Building on recent NMR experiments [A. Orlova et al., Phys. Rev. Lett. 118, 067203 (2017).PRLTAO0031-900710.1103/PhysRevLett.118.067203], we theoretically investigate the high magnetic field regime of the disordered quasi-one-dimensional S=1 antiferromagnetic material Ni(Cl_{1-x}Br_{x})_{2}-4SC(NH_{2})_{2}. The interplay between disorder, chemically controlled by Br-doping, interactions, and the external magnetic field, leads to a very rich phase diagram. Beyond the well-known antiferromagnetically ordered regime, an analog of a Bose condensate of magnons, which disappears when H≥12.3 T, we unveil a resurgence of phase coherence at a higher field H∼13.6 T, induced by the doping. Interchain couplings stabilize the finite temperature long-range order whose extension in the field-temperature space is governed by the concentration of impurities x. Such a "minicondensation" contrasts with previously reported Bose-glass physics in the same regime and should be accessible to experiments.

3.
Phys Rev Lett ; 118(6): 067203, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28234518

ABSTRACT

By measuring the nuclear magnetic resonance (NMR) T_{1}^{-1} relaxation rate in the Br (bond) doped DTN compound, Ni(Cl_{1-x}Br_{x})_{2}-4SC(NH_{2})_{2}(DTNX), we show that the low-energy spin dynamics of its high magnetic field "Bose-glass" regime is dominated by a strong peak of spin fluctuations found at the nearly doping-independent position H^{*}≅13.6 T. From its temperature and field dependence, we conclude that this corresponds to a level crossing of the energy levels related to the doping-induced impurity states. Observation of the local NMR signal from the spin adjacent to the doped Br allowed us to fully characterize this impurity state. We have thus quantified a microscopic theoretical model that paves the way to better understanding of the Bose-glass physics in DTNX, as revealed in the related theoretical study [M. Dupont, S. Capponi, and N. Laflorencie, Phys. Rev. Lett. 118, 067204 (2017).PRLTAO0031-900710.1103/PhysRevLett.118.067204].

4.
J Phys Condens Matter ; 29(4): 043002, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27875325

ABSTRACT

Fermions hopping on a hexagonal lattice represent one of the most active research fields in condensed matter since the discovery of graphene in 2004 and its numerous applications. Another exciting aspect of the interplay between geometry and quantum mechanical effects is given by the Haldane model (Haldane 1988 Phys. Rev. Lett. 61 2015), where spinless fermions experiencing a certain flux pattern on the honeycomb lattice leads to the stabilization of a topological phase of matter, distinct from a Mott insulator and nowadays dubbed Chern insulator. In this context, it is crucial to understand the role of interactions and this review will describe recent results that have been obtained for a minimal model, namely spinless fermions with nearest and next-nearest neighbour density-density interactions on the honeycomb lattice at half-filling. Topics addressed include an introduction of the minimal model and a discussion of the possible instabilities of the Dirac semimetal, a presentation of various theoretical and numerical approaches, and a summary of the results with a particular emphasis on the stability or not of some exotic quantum phases such as charge ordered ones (similar to Wigner crystals) and spontaneous Chern insulator phases.

5.
Article in English | MEDLINE | ID: mdl-25019753

ABSTRACT

We investigate the low-energy properties as well as quantum and thermal phase transitions of the Baxter-Wu model in a transverse magnetic field. Our study relies on stochastic series expansion quantum Monte Carlo and on series expansions about the low- and high-field limits at zero temperature using the quantum finite-lattice method on the triangular lattice. The phase boundary consists of a second-order critical line in the four-state Potts model universality class starting from the pure Baxter-Wu limit meeting a first-order line connected to the zero-temperature transition point (h≈2.4, T=0). Both lines merge at a tricritical point approximately located at (h≈2.3J, T≈J).


Subject(s)
Magnetic Fields , Models, Theoretical , Algorithms , Computer Simulation , Phase Transition , Quantum Theory , Stochastic Processes , Temperature
6.
Phys Rev Lett ; 103(17): 170501, 2009 Oct 23.
Article in English | MEDLINE | ID: mdl-19905737

ABSTRACT

When a system undergoes a quantum phase transition, the ground-state wave function shows a change of nature, which can be monitored using the fidelity concept. We introduce two quantum Monte Carlo schemes that allow the computation of fidelity and its susceptibility for large interacting many-body systems. These methods are illustrated on a two-dimensional Heisenberg model, where fidelity estimators show marked behavior at two successive quantum phase transitions. We also develop a scaling theory which relates the divergence of the fidelity susceptibility to the critical exponent of the correlation length. A good agreement is found with the numerical results.

7.
Phys Rev Lett ; 99(11): 117204, 2007 Sep 14.
Article in English | MEDLINE | ID: mdl-17930468

ABSTRACT

We introduce for SU(2) quantum spin systems the valence bond entanglement entropy as a counting of valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can be calculated in all dimensions with quantum Monte Carlo simulations in the valence bond basis. We show numerically that this quantity displays all features of the von Neumann entanglement entropy for several one-dimensional systems. For two-dimensional Heisenberg models, we find a strict area law for a valence bond solid state and multiplicative logarithmic corrections for the Néel phase.

8.
Phys Rev Lett ; 91(13): 137203, 2003 Sep 26.
Article in English | MEDLINE | ID: mdl-14525334

ABSTRACT

Single-particle diagonal and off-diagonal Green's functions of a two-leg t-J ladder at 1/8 doping are investigated by exact diagonalizations techniques. A numerically tractable expression for the superconducting gap is proposed and the frequency dependence of the real and imaginary parts of the gap are determined. The role of the low-energy gapped spin modes, whose energies are computed by a (one-step) contractor renormalization procedure, is discussed.

9.
Phys Rev Lett ; 89(13): 137004, 2002 Sep 23.
Article in English | MEDLINE | ID: mdl-12225054

ABSTRACT

We propose a microscopic state for the vortex phase of BSCO superconductors. Around the vortex core or above H(c2), the d wave hole pairs form a checkerboard localized in the antiferromagnetic background. We discuss this theory in connection with recent STM experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...