Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotoxicology ; 10(3): 352-60, 2016.
Article in English | MEDLINE | ID: mdl-26305411

ABSTRACT

Consumer exposure to silver nanoparticles (AgNP) via ingestion can occur due to incorporation of AgNP into products such as food containers and dietary supplements. AgNP variations in size and coating may affect toxicity, elimination kinetics or tissue distribution. Here, we directly compared acute administration of AgNP of two differing coatings and sizes to mice, using doses of 0.1, 1 and 10 mg/kg body weight/day administered by oral gavage for 3 days. The maximal dose is equivalent to 2000× the EPA oral reference dose. Silver acetate at the same doses was used as ionic silver control. We found no toxicity and no significant tissue accumulation. Additionally, no toxicity was seen when AgNP were dosed concurrently with a broad-spectrum antibiotic. Between 70.5% and 98.6% of the administered silver dose was recovered in feces and particle size and coating differences did not significantly influence fecal silver. Peak fecal silver was detected between 6- and 9-h post-administration and <0.5% of the administered dose was cumulatively detected in liver, spleen, intestines or urine at 48 h. Although particle size and coating did not affect tissue accumulation, silver was detected in liver, spleen and kidney of mice administered ionic silver at marginally higher levels than those administered AgNP, suggesting that silver ion may be more bioavailable. Our results suggest that, irrespective of particle size and coating, acute oral exposure to AgNP at doses relevant to potential human exposure is associated with predominantly fecal elimination and is not associated with accumulation in tissue or toxicity.


Subject(s)
Feces/chemistry , Metal Nanoparticles/toxicity , Particle Size , Silver/pharmacokinetics , Silver/toxicity , Acetates/pharmacokinetics , Acetates/toxicity , Animals , Body Weight/drug effects , Citric Acid/chemistry , Citric Acid/toxicity , Dose-Response Relationship, Drug , Kinetics , Male , Metal Nanoparticles/chemistry , Mice , Models, Animal , Organ Size/drug effects , Polyvinyls/chemistry , Polyvinyls/toxicity , Pyrrolidines/chemistry , Pyrrolidines/toxicity , Silver/analysis , Silver/chemistry , Silver Compounds/pharmacokinetics , Silver Compounds/toxicity , Tissue Distribution
2.
Aerosol Sci Technol ; 49(1): 24-34, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25705069

ABSTRACT

Particles are frequently incorporated into clouds or precipitation, influencing climate by acting as cloud condensation or ice nuclei, taking up coatings during cloud processing, and removing species through wet deposition. Many of these particles, particularly ice nuclei, can remain suspended within cloud droplets/crystals as insoluble residues. While previous studies have measured the soluble or bulk mass of species within clouds and precipitation, no studies to date have determined the number concentration and size distribution of insoluble residues in precipitation or cloud water using in situ methods. Herein, for the first time we demonstrate that Nanoparticle Tracking Analysis (NTA) is a powerful in situ method for determining the total number concentration, number size distribution, and surface area distribution of insoluble residues in precipitation, both of rain and melted snow. The method uses 500 µL or less of liquid sample and does not require sample modification. Number concentrations for the insoluble residues in aqueous precipitation samples ranged from 2.0-3.0(±0.3)×108 particles cm-3, while surface area ranged from 1.8(±0.7)-3.2(±1.0)×107 µm2 cm-3. Number size distributions peaked between 133-150 nm, with both single and multi-modal character, while surface area distributions peaked between 173-270 nm. Comparison with electron microscopy of particles up to 10 µm show that, by number, > 97% residues are <1 µm in diameter, the upper limit of the NTA. The range of concentration and distribution properties indicates that insoluble residue properties vary with ambient aerosol concentrations, cloud microphysics, and meteorological dynamics. NTA has great potential for studying the role that insoluble residues play in critical atmospheric processes.

3.
J Phys Chem C Nanomater Interfaces ; 119(35): 20632-20641, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-28373899

ABSTRACT

As silver nanoparticles (AgNPs) are used in a wide array of commercial products and can enter the human body through oral exposure, it is important to understand the fundamental physical and chemical processes leading to changes in nanoparticle size under the conditions of the gastrointestinal (GI) tract. Rapid AgNP growth was observed using nanoparticle tracking analysis with 30 s resolution over a period of 17 min in simulated gastric fluid (SGF) to explore rapid kinetics as a function of pH (SGF at pH 2, 3.5, 4.5 and 5), size (20 and 110 nm AgNPs), and nanoparticle coating (citrate and PVP). Growth was observed for 20 nm AgNP at each pH, decreasing in rate with increasing pH, with the kinetics shifting from second-order to first-order. The 110 nm AgNP showed growth at ≤3.5 pH, with no growth observed at higher pH. This behavior can be explained by the generation of Ag+ in acidic environments, which precipitates with Cl-, leading to particle growth and facilitating particle aggregation by decreasing their electrostatic repulsion in solution. These results highlight the need to further understand the importance of initial size, physicochemical properties, and kinetics of AgNPs after ingestion to assess potential toxicity.

4.
Environ Sci Process Impacts ; 15(1): 204-13, 2013 Jan.
Article in English | MEDLINE | ID: mdl-24592437

ABSTRACT

Detection of single walled carbon nanotubes (CNTs) was performed using single particle-inductively coupled plasma-mass spectrometry (spICPMS). Due to the ambiguities inherent in detecting CNTs by carbon analysis, particularly in complex environmental matrices, this study focuses on using trace catalytic metals intercalated in the CNT structure as proxies for the nanotubes. Using a suite of commercially available CNTs, the monoisotopic elements Co and Y were found to be the most effective for differentiation of particulate pulses from background. The small, variable, amount of trace metal in each CNT makes separation from instrumental background challenging; multiple cut-offs for determining CNT number concentration were investigated to maximize the number of CNTs detected and minimize the number of false positives in the blanks. In simple solutions the number of CNT pulses detected increased linearly with concentration in the ng L−1 range. However, analysis of split samples by both spICPMS and Nanoparticle Tracking Analysis (NTA) showed the quantification of particle number concentration by spICPMS to be several orders of magnitude lower than by NTA. We postulate that this is a consequence of metal content and/or size, caused by the presence of many CNTs that do not contain enough metal to be above the instrument detection limit, resulting in undercounting CNTs by spICPMS. However, since the detection of CNTs at low ng L−1 concentrations is not possible by other techniques, spICPMS is still a more sensitive technique for detecting the presence of CNTs in environmental, materials, or biological applications. To highlight the potential of spICPMS in environmental studies the release of CNTs from polymer nanocomposites into solution was monitored, showcasing the technique's ability to detect changes in released CNT concentrations as a function of CNT loading.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Metals/analysis , Nanotubes, Carbon/analysis , Environmental Pollutants/chemistry , Limit of Detection , Metals/chemistry , Nanotubes, Carbon/chemistry
5.
Naturwissenschaften ; 95(5): 403-12, 2008 May.
Article in English | MEDLINE | ID: mdl-18183359

ABSTRACT

The cuticular surface of sexually mature females of the German cockroach contains a sex pheromone that, upon contact with the male's antennae, elicits a characteristic species-specific courtship behavior. This female-specific pheromone is a blend of several long-chain methyl ketones, alcohols and aldehydes, all derived from prominent cuticular hydrocarbons found in all life stages of this cockroach. We found that contact with the antennae of 5 out of 20 assayed cockroach species elicited courtship behavior in German cockroach males. The heterospecific courtship-eliciting compounds were isolated by behaviorally guided fractionation of the active crude extracts and compared to the native sex pheromone components. We identified two active compounds from the cuticular extract of the Oriental cockroach, Blatta orientalis -- 11-methylheptacosan-2-one and 27-oxo-11-methylheptacosan-2-one; the former compound was confirmed by synthesis and proved to independently stimulate courtship in German cockroach males. These compounds share common features with, but are distinct from, any of the known contact sex pheromone components. This suggests that sex pheromone reception in the male German cockroach is unusually promiscuous, accepting a wide range of compounds that share certain features with its native pheromone, thus resulting in a broad spectrum of behavioral response to other species. We propose that several characteristics of their mating system -- chiefly, absence of closely related species in the anthropogenic environment, resulting in relaxation of selection on sexual communication, and a highly male-biased operational sex ratio -- have driven males to respond with extremely low thresholds to a wide spectrum of related compounds.


Subject(s)
Blattellidae/physiology , Sexual Behavior, Animal/physiology , Animals , Female , Germany , Male , Pheromones/physiology , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...