Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 87(6): 492-501, 2019 06.
Article in English | MEDLINE | ID: mdl-30714210

ABSTRACT

The functional evolution of proteins advances through gene duplication followed by functional drift, whereas molecular evolution occurs through random mutational events. Over time, protein active-site structures or functional epitopes remain highly conserved, which enables relationships to be inferred between distant orthologs or paralogs. In this study, we present the first functional clustering and evolutionary analysis of the RCSB Protein Data Bank (RCSB PDB) based on similarities between active-site structures. All of the ligand-bound proteins within the RCSB PDB were scored using our Comparison of Protein Active-site Structures (CPASS) software and database (http://cpass.unl.edu/). Principal component analysis was then used to identify 4431 representative structures to construct a phylogenetic tree based on the CPASS comparative scores (http://itol.embl.de/shared/jcatazaro). The resulting phylogenetic tree identified a sequential, step-wise evolution of protein active-sites and provides novel insights into the emergence of protein function or changes in substrate specificity based on subtle changes in geometry and amino acid composition.


Subject(s)
Proteins/chemistry , Amino Acids/chemistry , Computational Biology , Databases, Protein , Proteins/physiology , Software
2.
J Exp Bot ; 67(11): 3587-99, 2016 05.
Article in English | MEDLINE | ID: mdl-27141917

ABSTRACT

High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets.


Subject(s)
Genome-Wide Association Study , Image Processing, Computer-Assisted/methods , Oryza/genetics , Crops, Agricultural/genetics , Electronic Data Processing , Phenotype , Software
3.
Proteins ; 82(10): 2597-608, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24920327

ABSTRACT

Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5'-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the comparison of protein active site structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional-fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS.


Subject(s)
Coenzymes/metabolism , Models, Molecular , Pyridoxal Phosphate/metabolism , Transaminases/chemistry , Amino Acid Sequence , Animals , Binding Sites , Catalytic Domain , Coenzymes/chemistry , Databases, Protein , Evolution, Molecular , Humans , Ligands , Molecular Sequence Data , Phylogeny , Protein Conformation , Pyridoxal Phosphate/chemistry , Sequence Alignment , Sequence Homology, Amino Acid , Software , Substrate Specificity , Transaminases/classification , Transaminases/genetics , Transaminases/metabolism
4.
J Proteome Res ; 12(9): 3831-42, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23919725

ABSTRACT

Identifying protein post-translational modifications (PTMs) from tandem mass spectrometry data of complex proteome mixtures is a highly challenging task. Here we present a new strategy, named iterative search for identifying PTMs (ISPTM), for tackling this challenge. The ISPTM approach consists of a basic search with no variable modification, followed by iterative searches of many PTMs using a small number of them (usually two) in each search. The performance of the ISPTM approach was evaluated on mixtures of 70 synthetic peptides with known modifications, on an 18-protein standard mixture with unknown modifications and on real, complex biological samples of mouse nuclear matrix proteins with unknown modifications. ISPTM revealed that many chemical PTMs were introduced by urea and iodoacetamide during sample preparation and many biological PTMs, including dimethylation of arginine and lysine, were significantly activated by Adriamycin treatment in nuclear matrix associated proteins. ISPTM increased the MS/MS spectral identification rate substantially, displayed significantly better sensitivity for systematic PTM identification compared with that of the conventional all-in-one search approach, and offered PTM identification results that were complementary to InsPecT and MODa, both of which are established PTM identification algorithms. In summary, ISPTM is a new and powerful tool for unbiased identification of many different PTMs with high confidence from complex proteome mixtures.


Subject(s)
Peptide Mapping/methods , Protein Processing, Post-Translational , Proteome/chemistry , Software , Algorithms , Amino Acid Sequence , Animals , Cell Line , Chromatography, Ion Exchange , Mice , Molecular Sequence Annotation , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Proteolysis , Proteome/isolation & purification , Proteome/metabolism , ROC Curve , Search Engine , Tandem Mass Spectrometry , Trypsin/chemistry
5.
BMC Res Notes ; 4: 17, 2011 Jan 26.
Article in English | MEDLINE | ID: mdl-21269480

ABSTRACT

BACKGROUND: A recent analysis of protein sequences deposited in the NCBI RefSeq database indicates that ~8.5 million protein sequences are encoded in prokaryotic and eukaryotic genomes, where ~30% are explicitly annotated as "hypothetical" or "uncharacterized" protein. Our Comparison of Protein Active-Site Structures (CPASS v.2) database and software compares the sequence and structural characteristics of experimentally determined ligand binding sites to infer a functional relationship in the absence of global sequence or structure similarity. CPASS is an important component of our Functional Annotation Screening Technology by NMR (FAST-NMR) protocol and has been successfully applied to aid the annotation of a number of proteins of unknown function. FINDINGS: We report a major upgrade to our CPASS software and database that significantly improves its broad utility. CPASS v.2 is designed with a layered architecture to increase flexibility and portability that also enables job distribution over the Open Science Grid (OSG) to increase speed. Similarly, the CPASS interface was enhanced to provide more user flexibility in submitting a CPASS query. CPASS v.2 now allows for both automatic and manual definition of ligand-binding sites and permits pair-wise, one versus all, one versus list, or list versus list comparisons. Solvent accessible surface area, ligand root-mean square difference, and Cß distances have been incorporated into the CPASS similarity function to improve the quality of the results. The CPASS database has also been updated. CONCLUSIONS: CPASS v.2 is more than an order of magnitude faster than the original implementation, and allows for multiple simultaneous job submissions. Similarly, the CPASS database of ligand-defined binding sites has increased in size by ~ 38%, dramatically increasing the likelihood of a positive search result. The modification to the CPASS similarity function is effective in reducing CPASS similarity scores for false positives by ~30%, while leaving true positives unaffected. Importantly, receiver operating characteristics (ROC) curves demonstrate the high correlation between CPASS similarity scores and an accurate functional assignment. As indicated by distribution curves, scores ≥ 30% infer a functional similarity. Software URL: http://cpass.unl.edu.

6.
Phys Rev Lett ; 99(21): 210401, 2007 Nov 23.
Article in English | MEDLINE | ID: mdl-18233196

ABSTRACT

The Aharonov-Bohm (AB) effect is a purely quantum mechanical effect. The original (classified as type-I) AB-phase shift exists in experimental conditions where the electromagnetic fields and forces are zero. It is the absence of forces that makes the AB effect entirely quantum mechanical. Although the AB-phase shift has been demonstrated unambiguously, the absence of forces in type-I AB effects has never been shown. Here, we report the observation of the absence of time delays associated with forces of the magnitude needed to explain the AB-phase shift for a macroscopic system.

SELECTION OF CITATIONS
SEARCH DETAIL
...